Anomalous Dissipation in Passive Scalar Transport

被引:0
|
作者
Theodore D. Drivas
Tarek M. Elgindi
Gautam Iyer
In-Jee Jeong
机构
[1] Stony Brook University,Department of Mathematics
[2] Duke University,Department of Mathematics
[3] Carnegie Mellon University,Department of Mathematical Sciences
[4] Seoul National University,Department of Mathematical Sciences and RIM
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study anomalous dissipation in hydrodynamic turbulence in the context of passive scalars. Our main result produces an incompressible C∞([0,T)×Td)∩L1([0,T];C1-(Td))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty ([0,T)\times {\mathbb {T}}^d)\cap L^1([0,T]; C^{1-}({\mathbb {T}}^d))$$\end{document} velocity field which explicitly exhibits anomalous dissipation. As a consequence, this example also shows the non-uniqueness of solutions to the transport equation with an incompressible L1([0,T];C1-(Td))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1([0,T]; C^{1-}({\mathbb {T}}^d))$$\end{document} drift, which is smooth except at one point in time. We also give a sufficient condition for anomalous dissipation based on solutions to the inviscid equation becoming singular in a controlled way. Finally, we discuss connections to the Obukhov-Corrsin monofractal theory of scalar turbulence along with other potential applications.
引用
收藏
页码:1151 / 1180
页数:29
相关论文
共 50 条
  • [41] Coupling between anomalous velocity and passive scalar increments in turbulence
    Boratav, ON
    Pelz, RB
    PHYSICS OF FLUIDS, 1998, 10 (09) : 2122 - 2124
  • [42] Anomalous scaling in passive scalar advection and Lagrangian shape dynamics
    Arad, I
    Procaccia, I
    IUTAM SYMPOSIUM ON GEOMETRY AND STATISTICS OF TURBULENCE, 2001, 59 : 175 - 184
  • [43] ANOMALOUS SCALING IN FLUID-MECHANICS - THE CASE OF THE PASSIVE SCALAR
    LVOV, VS
    PROCACCIA, I
    FAIRHALL, AL
    PHYSICAL REVIEW E, 1994, 50 (06) : 4684 - 4704
  • [44] Anomalous scaling behaviour of a passive scalar in the presence of a mean gradient
    Pumir, A
    EUROPHYSICS LETTERS, 1996, 34 (01): : 25 - 29
  • [45] Anomalous scaling exponents of a white-advected passive scalar
    Chertkov, M
    Falkovich, G
    PHYSICAL REVIEW LETTERS, 1996, 76 (15) : 2706 - 2709
  • [46] Anomalous scaling in a model of passive scalar advection: Exact results
    Fairhall, AL
    Gat, O
    Lvov, V
    Procaccia, I
    PHYSICAL REVIEW E, 1996, 53 (04): : 3518 - 3535
  • [47] Anomalous scaling in the N-point functions of a passive scalar
    Bernard, D
    Gawedzki, K
    Kupiainen, A
    PHYSICAL REVIEW E, 1996, 54 (03): : 2564 - 2572
  • [48] Anomalous scaling of a passive scalar field near two dimensions
    Gladyshev, A. V.
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    Zalom, P.
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [49] Anomalous scaling of a passive scalar advected by the synthetic compressible flow
    Antonov, NV
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 144 (3-4) : 370 - 386
  • [50] On the coupling between anomalous passive scalar and velocity increments in turbulence
    Boratav, ON
    Pelz, RB
    ADVANCES IN TURBULENCE VII, 1998, 46 : 507 - 510