Anomalous Dissipation in Passive Scalar Transport

被引:0
|
作者
Theodore D. Drivas
Tarek M. Elgindi
Gautam Iyer
In-Jee Jeong
机构
[1] Stony Brook University,Department of Mathematics
[2] Duke University,Department of Mathematics
[3] Carnegie Mellon University,Department of Mathematical Sciences
[4] Seoul National University,Department of Mathematical Sciences and RIM
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study anomalous dissipation in hydrodynamic turbulence in the context of passive scalars. Our main result produces an incompressible C∞([0,T)×Td)∩L1([0,T];C1-(Td))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty ([0,T)\times {\mathbb {T}}^d)\cap L^1([0,T]; C^{1-}({\mathbb {T}}^d))$$\end{document} velocity field which explicitly exhibits anomalous dissipation. As a consequence, this example also shows the non-uniqueness of solutions to the transport equation with an incompressible L1([0,T];C1-(Td))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1([0,T]; C^{1-}({\mathbb {T}}^d))$$\end{document} drift, which is smooth except at one point in time. We also give a sufficient condition for anomalous dissipation based on solutions to the inviscid equation becoming singular in a controlled way. Finally, we discuss connections to the Obukhov-Corrsin monofractal theory of scalar turbulence along with other potential applications.
引用
收藏
页码:1151 / 1180
页数:29
相关论文
共 50 条
  • [31] On the turbulent transport of a passive scalar by anisotropic turbulence
    Vincent, A
    Michaud, G
    Meneguzzi, M
    PHYSICS OF FLUIDS, 1996, 8 (05) : 1312 - 1320
  • [32] Dimensionality influence on passive scalar transport.
    Iovieno, M.
    Ducasse, L.
    Tordella, D.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): PARTICLES IN TURBULENCE, TRANSPORT PROCESSES AND MIXING, 2011, 318
  • [33] Passive Scalar Transport in a Turbulent Mixing Layer
    Li, Ning
    Balaras, Elias
    Wallace, James M.
    FLOW TURBULENCE AND COMBUSTION, 2010, 85 (01) : 1 - 24
  • [34] Transport of a Passive Scalar in a Stratified Porous Medium
    Aldo Fiori
    Gedeon Dagan
    Transport in Porous Media, 2002, 47 : 81 - 98
  • [35] Passive Scalar Transport in a Turbulent Mixing Layer
    Ning Li
    Elias Balaras
    James M. Wallace
    Flow, Turbulence and Combustion, 2010, 85 : 1 - 24
  • [36] Transport of a passive scalar in a stratified porous medium
    Fiori, A
    Dagan, G
    TRANSPORT IN POROUS MEDIA, 2002, 47 (01) : 81 - 98
  • [37] Transport of a passive scalar in a turbulent channel flow
    Papavassiliou, DV
    Hanratty, TJ
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (06) : 1303 - 1311
  • [38] Conditional average method for passive scalar transport
    Yang, TJ
    Kim, CB
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 35 (06) : L459 - L462
  • [39] Passive scalar transport by travelling wave fields
    Weichman, PB
    Glazman, RE
    JOURNAL OF FLUID MECHANICS, 2000, 420 : 147 - 200
  • [40] Anomalous Dissipation and Lack of Selection in the Obukhov–Corrsin Theory of Scalar Turbulence
    Maria Colombo
    Gianluca Crippa
    Massimo Sorella
    Annals of PDE, 2023, 9