Anomalous Dissipation in Passive Scalar Transport

被引:0
|
作者
Theodore D. Drivas
Tarek M. Elgindi
Gautam Iyer
In-Jee Jeong
机构
[1] Stony Brook University,Department of Mathematics
[2] Duke University,Department of Mathematics
[3] Carnegie Mellon University,Department of Mathematical Sciences
[4] Seoul National University,Department of Mathematical Sciences and RIM
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study anomalous dissipation in hydrodynamic turbulence in the context of passive scalars. Our main result produces an incompressible C∞([0,T)×Td)∩L1([0,T];C1-(Td))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty ([0,T)\times {\mathbb {T}}^d)\cap L^1([0,T]; C^{1-}({\mathbb {T}}^d))$$\end{document} velocity field which explicitly exhibits anomalous dissipation. As a consequence, this example also shows the non-uniqueness of solutions to the transport equation with an incompressible L1([0,T];C1-(Td))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1([0,T]; C^{1-}({\mathbb {T}}^d))$$\end{document} drift, which is smooth except at one point in time. We also give a sufficient condition for anomalous dissipation based on solutions to the inviscid equation becoming singular in a controlled way. Finally, we discuss connections to the Obukhov-Corrsin monofractal theory of scalar turbulence along with other potential applications.
引用
收藏
页码:1151 / 1180
页数:29
相关论文
共 50 条
  • [21] Turbulent transport of a passive scalar field
    Hill, JC
    Petty, CA
    CHEMICAL ENGINEERING COMMUNICATIONS, 1996, 153 : 413 - 432
  • [22] Passive scalar transport in Couette flow
    Yerragolam, Guru Sreevanshu
    Stevens, Richard J.A.M.
    Verzicco, Roberto
    Lohse, Detlef
    Shishkina, Olga
    Journal of Fluid Mechanics, 2022, 943
  • [23] ANOMALOUS SCALING OF A PASSIVE SCALAR IN TURBULENT-FLOW
    SHRAIMAN, BI
    SIGGIA, ED
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1995, 321 (07): : 279 - 284
  • [24] Regular and anomalous scaring of a randomly advected passive scalar
    Wang, XH
    PHYSICAL REVIEW E, 2001, 63 (04): : 473021 - 473024
  • [25] Anomalous scaling exponents of a passive scalar advected by turbulence
    Falkovich, G
    ADVANCES IN TURBULENCES VI, 1996, 36 : 577 - 580
  • [26] Anomalous scaling of a passive scalar in the presence of strong anisotropy
    Adzhemyan, LT
    Antonov, NV
    Hnatich, M
    Novikov, SV
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [27] Anomalous scaling for a passive scalar near the Batchelor limit
    Shraiman, BI
    Siggia, ED
    PHYSICAL REVIEW E, 1998, 57 (03): : 2965 - 2977
  • [28] Burgers equation with a passive scalar: Dissipation anomaly and Colombeau calculus
    Ohkitani, Koji
    Dowker, Mark
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
  • [29] Dissipation fluctuations of a passive scalar advected by a random velocity field
    Yakhot, V
    PHYSICAL REVIEW E, 1996, 54 (03): : 2610 - 2615
  • [30] JOINT STATISTICS OF A PASSIVE SCALAR AND ITS DISSIPATION IN TURBULENT FLOWS
    ANSELMET, F
    DJERIDI, H
    FULACHIER, L
    JOURNAL OF FLUID MECHANICS, 1994, 280 : 173 - 197