Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions

被引:0
|
作者
R. Azencott
A. Beri
I. Timofeyev
机构
[1] University of Houston,Department of Mathematics
[2] Ecole Normale Superieure,undefined
来源
关键词
Sub-sampling; Parametric estimation; Stochastic differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Gaussian diffusion Xt (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ2, and an approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} converging to Xt in L2 as ε→0. We study estimators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} are consistent and asymptotically efficient estimators of γ and σ2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.
引用
收藏
页码:1066 / 1089
页数:23
相关论文
共 50 条
  • [21] Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
    Azencott, Robert
    Ren, Peng
    Timofeyev, Ilya
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1276 - 1298
  • [22] Multiple description video coding using adaptive temporal sub-sampling
    Bai, Huihui
    Zhao, Yao
    Zhu, Ce
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 1331 - +
  • [23] Detecting marine mammals with an adaptive sub-sampling recorder in the Bering Sea
    Miksis-Olds, Jennifer L.
    Nystuen, Jeffrey A.
    Parks, Susan E.
    APPLIED ACOUSTICS, 2010, 71 (11) : 1087 - 1092
  • [24] PICTURE QUALITY ESTIMATION METHOD AND APPLICATION TO OFFSET SUB-SAMPLING SYSTEMS
    YUYAMA, I
    KURITA, T
    IEICE TRANSACTIONS ON COMMUNICATIONS ELECTRONICS INFORMATION AND SYSTEMS, 1991, 74 (11): : 3584 - 3592
  • [25] A SiGe Differential 50 ps Gaussian Pulse Generator for Sub-Sampling TDR Measurements
    Hasenaecker, Gregor
    Rein, Hans-Martin
    Aufinger, Klaus
    Pohl, Nils
    Musch, Thomas
    2015 IEEE 15TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), 2015, : 4 - 6
  • [26] Adaptive Sub-Sampling Based Reconfigurable SAD Tree Architecture for HDTV Application
    Huang, Yiqing
    Liu, Qin
    Goto, Satoshi
    Ikenaga, Takeshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (11) : 2819 - 2829
  • [28] The effect of volume sub-sampling on motion estimation of joints via MR imaging
    Sekaran, D.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (03) : 242 - 246
  • [29] Reconfigurable SAD Tree Architecture based on Adaptive Sub-sampling in HDTV Application
    Huang, Yiqing
    Liu, Qin
    Goto, Satoshi
    Ikenaga, Takeshi
    GLSVLSI 2009: PROCEEDINGS OF THE 2009 GREAT LAKES SYMPOSIUM ON VLSI, 2009, : 463 - 468
  • [30] An adaptive video sub-sampling technique for the conversion between high and low resolution
    Wong, PHW
    Au, OC
    Wong, JWC
    Tourapis, A
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : C281 - C284