Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions

被引:0
|
作者
R. Azencott
A. Beri
I. Timofeyev
机构
[1] University of Houston,Department of Mathematics
[2] Ecole Normale Superieure,undefined
来源
关键词
Sub-sampling; Parametric estimation; Stochastic differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Gaussian diffusion Xt (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ2, and an approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} converging to Xt in L2 as ε→0. We study estimators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} are consistent and asymptotically efficient estimators of γ and σ2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.
引用
收藏
页码:1066 / 1089
页数:23
相关论文
共 50 条
  • [41] NOTE ON A THEORETICAL SUB-SAMPLING DISTRIBUTION OF MACROPLANKTON
    HORWOOD, JW
    DRIVER, RM
    JOURNAL DU CONSEIL, 1976, 36 (03): : 274 - 276
  • [42] A SYSTEMATIC PROCEDURE FOR SUB-SAMPLING PLANKTON SAMPLES
    KOUTSIKOPOULOS, C
    PETITGAS, P
    OCEANOLOGICA ACTA, 1990, 13 (03) : 403 - 409
  • [43] Implementation considerations for a sub-sampling impulse radio
    Chen, Mike Shuo-Wei
    Brodersen, Robert W.
    2006 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND, VOLS 1 AND 2, 2006, : 345 - +
  • [44] Evaluation of sample processing and sub-sampling performance
    da Silva, RJNB
    Figueiredo, H
    Santos, JR
    Camoes, MFGFC
    ANALYTICA CHIMICA ACTA, 2003, 477 (02) : 169 - 185
  • [45] Parametric Estimation of UWB Signals with sub-Nyquist Sampling
    Pistea, Ana-Maria
    Nicolaescu, Ioan
    Radoi, Emanuel
    Tuta, Leontin
    2015 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2015,
  • [46] Sub-sampling and preparing forensic samples for pollen analysis
    Horrocks, M
    JOURNAL OF FORENSIC SCIENCES, 2004, 49 (05) : 1024 - 1027
  • [47] A Concurrent Quadrature Sub-Sampling Mixer for Multiband Receivers
    Heragu, Aravind
    Balasubramanian, Viswanathan
    Enz, Christian
    2009 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1 AND 2, 2009, : 271 - 274
  • [48] Sub-sampling of channels with time and frequency sparsity access
    Louet, Yves
    Savaux, Vincent
    Kountouris, Apostolos
    Moy, Christophe
    2017 XXXIIND GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE (URSI GASS), 2017,
  • [49] Optimized sub-sampling of point sets for surface splatting
    Wu, JH
    Kobbelt, L
    COMPUTER GRAPHICS FORUM, 2004, 23 (03) : 643 - 652
  • [50] The Analysis and Design of RF Sub-sampling Frontend for SDR
    Kim, Jae-Hyung
    Wang, Hongmei
    Kim, Jin-Up
    Lee, Seung-Hwan
    Yu, Jae-Hwang
    Lee, Dong-Hahk
    2008 THIRD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA, VOLS 1-3, 2008, : 1155 - +