Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions

被引:0
|
作者
R. Azencott
A. Beri
I. Timofeyev
机构
[1] University of Houston,Department of Mathematics
[2] Ecole Normale Superieure,undefined
来源
关键词
Sub-sampling; Parametric estimation; Stochastic differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Gaussian diffusion Xt (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ2, and an approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} converging to Xt in L2 as ε→0. We study estimators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} are consistent and asymptotically efficient estimators of γ and σ2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.
引用
收藏
页码:1066 / 1089
页数:23
相关论文
共 50 条
  • [1] Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions
    Azencott, R.
    Beri, A.
    Timofeyev, I.
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (06) : 1066 - 1089
  • [2] SUB-SAMPLING AND PARAMETRIC ESTIMATION FOR MULTISCALE DYNAMICS
    Azencott, Robert
    Beri, Arjun
    Jain, Ankita
    Timofeyev, Ilya
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (04) : 939 - 970
  • [3] Irregular image sub-sampling and reconstruction by adaptive sampling
    LeFloch, H
    Labit, C
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 379 - 382
  • [4] Adaptive block sub-sampling algorithm for motion-estimation on SIMD processors
    Jindal, M
    Rao, GN
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1457 - 1460
  • [5] INTRA-PREDICTION WITH ADAPTIVE SUB-SAMPLING
    Tan, Yih Han
    Yeo, Chuohao
    Li, Zhengguo
    Rahardja, Susanto
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [6] MULTIPLE FREQUENCIES ESTIMATION OF SIGNAL WITH SUB-SAMPLING
    Tang Bin(Southwestern Petroleum Institute
    JournalofElectronics(China), 1998, (03) : 233 - 239
  • [7] Sub-sampling for Efficient Non-Parametric Bandit Exploration
    Baudry, Dorian
    Kaufmann, Emilie
    Maillard, Odalric-Ambrym
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [8] A Low-Jitter Sub-Sampling PLL With a Sub-Sampling DLL
    Qian, Yuan Cheng
    Chao, Yen Yu
    Liu, Shen Iuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (02) : 269 - 273
  • [10] ACTIVE COVARIANCE ESTIMATION BY RANDOM SUB-SAMPLING OF VARIABLES
    Pavez, Eduardo
    Ortega, Antonio
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4034 - 4038