Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI

被引:0
|
作者
W. Jeffrey Zabel
Nader Allam
Warren D. Foltz
Costel Flueraru
Edward Taylor
I. Alex Vitkin
机构
[1] University of Toronto,Department of Medical Biophysics
[2] Princess Margaret Cancer Centre,Radiation Medicine Program
[3] University of Toronto,Department of Radiation Oncology
[4] Information Communication Technology,National Research Council Canada
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature (μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \mathrm{m}$$\end{document} scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction (VVF) and the mean distance to nearest vessel (DNV¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{DNV} }$$\end{document}) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement (r=-0.81\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=-0.81$$\end{document} and 0.83\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.83$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both), the area under the gadolinium-time concentration curve (r=0.50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.50$$\end{document} and -0.48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.48$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both) and ktrans\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{trans}$$\end{document} (r=0.64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.64$$\end{document} and -0.61\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.61$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both). Several other correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.
引用
收藏
相关论文
共 50 条
  • [41] Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography
    Povazay, Boris
    Hofer, Bernd
    Torti, Cristiano
    Hermann, Boris
    Tumlinson, Alexandre R.
    Esmaeelpour, Marieh
    Egan, Catherine A.
    Bird, Alan C.
    Drexler, Wolfgang
    OPTICS EXPRESS, 2009, 17 (05): : 4134 - 4150
  • [42] Dynamic microscopic optical coherence tomography to visualize the morphological and functional micro-anatomy of the airways
    Kohlfaerber, Tabea
    Pieper, Mario
    Muenter, Michael
    Holzhausen, Cornelia
    Ahrens, Martin
    Idel, Christian
    Bruchhage, Karl-ludwig
    Leichtle, Anke
    Koenig, Peter
    Huettmann, Gereon
    Schulz-Hildebrandt, Hinnerk
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (06) : 3211 - 3223
  • [43] Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography
    Chu, Kengyeh K.
    Kusek, Mark E.
    Liu, Linbo
    Som, Avira
    Yonker, Lael M.
    Leung, Huimin
    Cui, Dongyao
    Ryu, Jinhyeob
    Eaton, Alexander D.
    Tearney, Guillermo J.
    Hurley, Bryan P.
    SCIENTIFIC REPORTS, 2017, 7
  • [44] Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography
    Kengyeh K. Chu
    Mark E. Kusek
    Linbo Liu
    Avira Som
    Lael M. Yonker
    Huimin Leung
    Dongyao Cui
    Jinhyeob Ryu
    Alexander D. Eaton
    Guillermo J. Tearney
    Bryan P. Hurley
    Scientific Reports, 7
  • [45] Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation
    Abdelmotaal, Hazem
    Sharaf, Mohamed
    Soliman, Wael
    Wasfi, Ehab
    Kedwany, Salma M.
    BMC OPHTHALMOLOGY, 2022, 22 (01)
  • [46] Dynamic analysis of chemical eye burns using high-resolution optical coherence tomography
    Spoeler, Felix
    Foerst, Michael
    Kurz, Heinrich
    Frentz, Markus
    Schrage, Norbert F.
    JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (04)
  • [47] Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation
    Hazem Abdelmotaal
    Mohamed Sharaf
    Wael Soliman
    Ehab Wasfi
    Salma M. Kedwany
    BMC Ophthalmology, 22
  • [48] Dynamic contrast-enhanced and ultra-high-resolution breast MRI at 7.0 Tesla
    Stehouwer, Bertine L.
    Klomp, Dennis W. J.
    van den Bosch, Maurice A. A. J.
    Korteweg, Mies A.
    Gilhuijs, Kenneth G. A.
    Witkamp, Arjen J.
    van Diest, Paul J.
    Houwert, Karel A. F.
    van der Kemp, Wybe J. M.
    Luijten, Peter R.
    Mali, W. P. Th. M.
    Veldhuis, Wouter B.
    EUROPEAN RADIOLOGY, 2013, 23 (11) : 2961 - 2968
  • [49] Dynamic contrast-enhanced and ultra-high-resolution breast MRI at 7.0 Tesla
    Bertine L. Stehouwer
    Dennis W. J. Klomp
    Maurice A. A. J. van den Bosch
    Mies A. Korteweg
    Kenneth G. A. Gilhuijs
    Arjen J. Witkamp
    Paul J. van Diest
    Karel A. F. Houwert
    Wybe J. M. van der Kemp
    Peter R. Luijten
    W. P. Th. M. Mali
    Wouter B. Veldhuis
    European Radiology, 2013, 23 : 2961 - 2968
  • [50] Contrast-enhanced optical coherence tomography based on spatial frequency analysis applied to the murine cochlea
    Yang, Zihan
    Kim, Wihan
    Quinones, Patricia M.
    Oghalai, John S.
    Applegate, Brian E.
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XXVIII, 2024, 12830