Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI

被引:0
|
作者
W. Jeffrey Zabel
Nader Allam
Warren D. Foltz
Costel Flueraru
Edward Taylor
I. Alex Vitkin
机构
[1] University of Toronto,Department of Medical Biophysics
[2] Princess Margaret Cancer Centre,Radiation Medicine Program
[3] University of Toronto,Department of Radiation Oncology
[4] Information Communication Technology,National Research Council Canada
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature (μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \mathrm{m}$$\end{document} scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction (VVF) and the mean distance to nearest vessel (DNV¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{DNV} }$$\end{document}) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement (r=-0.81\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=-0.81$$\end{document} and 0.83\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.83$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both), the area under the gadolinium-time concentration curve (r=0.50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.50$$\end{document} and -0.48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.48$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both) and ktrans\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{trans}$$\end{document} (r=0.64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.64$$\end{document} and -0.61\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.61$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both). Several other correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.
引用
收藏
相关论文
共 50 条
  • [21] Magnetic protein microspheres as dynamic contrast agents for magnetomotive optical coherence tomography
    Nguyen, Freddy T.
    Dibbern, Elizabeth M.
    Chaney, Eric J.
    Oldenburg, Amy L.
    Suslick, Kenneth S.
    Boppart, Stephen A.
    MOLECULAR PROBES FOR BIOMEDICAL APPLICATIONS II, 2008, 6867
  • [22] Dynamic optical coherence tomography imaging of the lacrimal passage with an extrinsic contrast agent
    Yoshimura, Reiko
    Choi, Dong-Hak
    Fujimoto, Masahiro
    Uji, Akihito
    Hiwatashi, Fumiko
    Ohbayashi, Kohji
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (03) : 1482 - 1495
  • [23] Resolution-enhanced optical coherence tomography based on classical intensity interferometry
    Lajunen, Hanna
    Torres-Company, Victor
    Lancis, Jesus
    Friberg, Ari T.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (04) : 1049 - 1054
  • [24] Relationship of Temporal Resolution to Diagnostic Performance for Dynamic Contrast Enhanced MRI of the Breast
    El Khouli, Riham H.
    Macura, Katarzyna J.
    Barker, Peter B.
    Habba, Mohamed R.
    Jacobs, Michael A.
    Bluemke, David A.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 30 (05) : 999 - 1004
  • [25] Critical role of spatial resolution in dynamic contrast-enhanced breast MRI
    Furman-Haran, E
    Grobgeld, D
    Kelcz, F
    Degani, H
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 13 (06) : 862 - 867
  • [26] Imaging of coronary artery plaques using contrast-enhanced optical coherence tomography
    Foin, Nicolas
    Mari, Jean Martial
    Davies, Justin E.
    Di Mario, Carlo
    Girard, Michael J. A.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2013, 14 (01) : 85 - 85
  • [27] Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging
    Orly Liba
    Elliott D. SoRelle
    Debasish Sen
    Adam de la Zerda
    Scientific Reports, 6
  • [28] Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging
    Liba, Orly
    SoRelle, Elliott D.
    Sen, Debasish
    de la Zerda, Adam
    SCIENTIFIC REPORTS, 2016, 6
  • [29] Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts
    Tomlins, Peter H.
    Smith, Graham N.
    Woolliams, Peter D.
    Rasakanthan, Janarthanan
    Sugden, Kate
    BIOMEDICAL OPTICS EXPRESS, 2011, 2 (05): : 1319 - 1327
  • [30] Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography
    Meemon, Panomsak
    Lee, Kye-Sung
    Murali, Supraja
    Rolland, Jannick
    APPLIED OPTICS, 2008, 47 (13) : 2452 - 2457