Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI

被引:0
|
作者
W. Jeffrey Zabel
Nader Allam
Warren D. Foltz
Costel Flueraru
Edward Taylor
I. Alex Vitkin
机构
[1] University of Toronto,Department of Medical Biophysics
[2] Princess Margaret Cancer Centre,Radiation Medicine Program
[3] University of Toronto,Department of Radiation Oncology
[4] Information Communication Technology,National Research Council Canada
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature (μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \mathrm{m}$$\end{document} scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction (VVF) and the mean distance to nearest vessel (DNV¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{DNV} }$$\end{document}) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement (r=-0.81\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=-0.81$$\end{document} and 0.83\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.83$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both), the area under the gadolinium-time concentration curve (r=0.50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.50$$\end{document} and -0.48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.48$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both) and ktrans\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{trans}$$\end{document} (r=0.64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.64$$\end{document} and -0.61\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.61$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both). Several other correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.
引用
收藏
相关论文
共 50 条
  • [31] Dynamic Optical Coherence Tomography strongly enhances contrast in the ex vivo murine cochlea
    Serafino, Michael J.
    Walker, Clayton
    Quinones, Patricia M.
    Wang, Juemei
    Macias-Escriva, Frank D.
    Oghalai, John S.
    Applegate, Brian E.
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XXVIII, 2024, 12830
  • [32] Laminar cortical blood flow in mice is quantified by dynamic contrast optical coherence tomography
    Merkle, C.
    Srinivasan, V.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 : 67 - 68
  • [33] Contrast-enhanced high in-plane resolution dynamic MRI of the breast - Are there advantages in comparison to standard dynamic MRI?
    Obenauer, S
    Schorn, C
    Stelter, B
    Fischer, U
    Grabbe, E
    CLINICAL IMAGING, 2002, 26 (03) : 161 - 165
  • [34] Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography
    Drexler, W
    Sattmarin, H
    Hermann, B
    Ko, TH
    Stur, M
    Unterhuber, A
    Scholda, C
    Findl, O
    Wirtitsch, M
    Fujimoto, JG
    Fercher, AF
    ARCHIVES OF OPHTHALMOLOGY, 2003, 121 (05) : 695 - 706
  • [35] Optimal Analysis Method for Dynamic Contrast-Enhanced Diffuse Optical Tomography
    Ghijsen, Michael
    Lin, Yuting
    Hsing, Mitchell
    Nalcioglu, Orhan
    Gulsen, Gultekin
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2011, 2011
  • [36] High-Sensitivity Contrast-Enhanced in vivo Imaging with Optical Coherence Tomography (OCT)
    Liba, Orly
    SoRelle, Elliott D.
    Sen, Debasish
    de la Zerda, Adam
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [37] Contrast Enhanced Subsurface Fingerprint Detection Using High-Speed Optical Coherence Tomography
    Yu, Xiaojun
    Xiong, Qiaozhou
    Luo, Yuemei
    Wang, Nanshuo
    Wang, Lulu
    Tey, Hong Liang
    Liu, Linbo
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (01) : 70 - 73
  • [38] Retroreflective-type Janus microspheres as a novel contrast agent for enhanced optical coherence tomography
    Zhang, Jian
    Liu, Jing
    Wang, Li-Mei
    Li, Zhi-Yuan
    Yuan, Zhen
    JOURNAL OF BIOPHOTONICS, 2017, 10 (6-7) : 878 - 886
  • [39] Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo
    Merkle, Conrad W.
    Zhu, Jun
    Bernucci, Marcel T.
    Srinivasan, Vivek J.
    NEUROIMAGE, 2019, 202
  • [40] Enhanced optical coherence vibration tomography for subnanoscale-displacement-resolution calibration of piezoelectric actuators
    Zhong, Shuncong
    Zhang, Qiukun
    SENSORS AND ACTUATORS A-PHYSICAL, 2015, 233 : 42 - 46