Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI

被引:0
|
作者
W. Jeffrey Zabel
Nader Allam
Warren D. Foltz
Costel Flueraru
Edward Taylor
I. Alex Vitkin
机构
[1] University of Toronto,Department of Medical Biophysics
[2] Princess Margaret Cancer Centre,Radiation Medicine Program
[3] University of Toronto,Department of Radiation Oncology
[4] Information Communication Technology,National Research Council Canada
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature (μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \mathrm{m}$$\end{document} scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction (VVF) and the mean distance to nearest vessel (DNV¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{DNV} }$$\end{document}) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement (r=-0.81\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=-0.81$$\end{document} and 0.83\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.83$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both), the area under the gadolinium-time concentration curve (r=0.50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.50$$\end{document} and -0.48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.48$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both) and ktrans\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{trans}$$\end{document} (r=0.64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.64$$\end{document} and -0.61\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.61$$\end{document} respectively, P<0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<0.0001$$\end{document} for both). Several other correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.
引用
收藏
相关论文
共 50 条
  • [1] Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI
    Zabel, W. Jeffrey
    Allam, Nader
    Foltz, Warren D.
    Flueraru, Costel
    Taylor, Edward
    Vitkin, I. Alex
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Contrast and resolution in optical coherence tomography
    Hellmuth, T
    OPTICAL BIOPSIES AND MICROSCOPIC TECHNIQUES, PROCEEDINGS OF, 1996, 2926 : 228 - 237
  • [3] Quantification of Radiation-Induced Microvasculature Changes Using Optical Coherence Tomography and Dynamic Contrast Enhanced MRI
    Zabel, W. Jeffrey
    Allam, Nader
    Taylor, Edward
    Vitkin, I. Alex
    TRANSLATIONAL BIOPHOTONICS: DIAGNOSTICS AND THERAPEUTICS, 2021, 11919
  • [4] Nanoparticles for Enhanced Contrast Optical Coherence Tomography
    Maule, Cesar D.
    Quaresma, Pedro
    Carvalho, Patricia A.
    Jorge, Pedro
    Pereira, Eulalia
    Rosa, Carla C.
    1ST CANTERBURY WORKSHOP ON OPTICAL COHERENCE TOMOGRAPHY AND ADAPTIVE OPTICS, 2008, 7139
  • [5] High-resolution contrast-enhanced optical coherence tomography in mice retinae
    Sen, Debasish
    SoRelle, Elliott D.
    Liba, Orly
    Dalal, Roopa
    Paulus, Yannis M.
    Kim, Tae-Wan
    Moshfeghi, Darius M.
    de la Zerda, Adam
    JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)
  • [6] Contrast-enhanced intraoperative optical coherence tomography
    Ehlers, Justis P.
    McNutt, Stephen A.
    Kaiser, Peter K.
    Srivastava, Sunil K.
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2013, 97 (11) : 1384 - 1386
  • [7] Quantitative contrast-enhanced optical coherence tomography
    Winetraub, Yonatan
    SoRelle, Elliott D.
    Liba, Orly
    de la Zerda, Adam
    APPLIED PHYSICS LETTERS, 2016, 108 (02)
  • [8] Enhanced-Resolution Optical Coherence Tomography Imaging
    Uji, Akihito
    Murakami, Tomoaki
    Arichika, Shigeta
    Muraoka, Yuki
    Yoshitake, Shin
    Dodo, Yoko
    Yoshimura, Nagahisa
    OPHTHALMOLOGICA, 2016, 235 (03) : 163 - 172
  • [9] Evaluation of Contrast Agents for Enhanced Visualization in Optical Coherence Tomography
    Ehlers, Justis P.
    Gupta, Preeya K.
    Farsiu, Sina
    Maldonado, Ramiro
    Kim, Terry
    Toth, Cynthia A.
    Mruthyunjaya, Prithvi
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (12) : 6614 - 6619
  • [10] Segmentation of the urothelium in optical coherence tomography images with dynamic contrast
    Xu, Zhuo
    Zhu, Hui
    Wang, Hui
    JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (08)