Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces

被引:0
|
作者
Ángel Ballesteros
Alberto Enciso
Francisco José Herranz
Orlando Ragnisco
机构
[1] Universidad de Burgos,Depto. de Física, Facultad de Ciencias
[2] Universidad Complutense,Depto. de Física Teórica II
[3] Universidad de Burgos,Depto. de Física, Escuela Politécnica Superior
[4] Università di Roma Tre and Instituto Nazionale di Fisica Nucleare sezione di Roma Tre,Dipartimento di Fisica
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The maximal superintegrability of the intrinsic harmonic oscillator potential on N-dimensional spaces with constant curvature is revisited from the point of view of sl(2)-Poisson coalgebra symmetry. It is shown how this algebraic approach leads to a straightforward definition of a new large family of quasi-maximally superintegrable perturbations of the intrinsic oscillator on such spaces. Moreover, the generalization of this construction to those N-dimensional spaces with non-constant curvature that are endowed with sl(2)-coalgebra symmetry is presented. As the first examples of the latter class of systems, both the oscillator potential on an N-dimensional Darboux space as well as several families of its quasi-maximally superintegrable anharmonic perturbations are explicitly constructed.
引用
收藏
页码:43 / 52
页数:9
相关论文
共 50 条
  • [1] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ballesteros, Angel
    Enciso, Alberto
    Jose Herranz, Francisco
    Ragnisco, Orlando
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 43 - 52
  • [2] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    E. G. Kalnins
    J. M. Kress
    W. Miller
    G. S. Pogosyan
    [J]. Physics of Atomic Nuclei, 2007, 70 : 545 - 553
  • [3] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    Kalnins, E. G.
    Kress, J. M.
    Miller, W.
    Pogosyan, G. S.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2007, 70 (03) : 545 - 553
  • [4] Maximal superintegrability on N-dimensional curved spaces
    Ballesteros, A
    Herranz, FJ
    Santander, M
    Sanz-Gil, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : L93 - L99
  • [5] Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature
    Ballesteros, Angel
    Herranz, Francisco J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) : F51 - F59
  • [6] EIGENVALUES OF ANHARMONIC-OSCILLATORS AND THE PERTURBED COULOMB PROBLEM IN N-DIMENSIONAL SPACE
    CHAUDHURI, RN
    MONDAL, M
    [J]. PHYSICAL REVIEW A, 1995, 52 (03): : 1850 - 1856
  • [7] Maximally superintegrable Smorodinsky-Winternitz systems on the N-dimensional sphere and hyperbolic spaces
    Herranz, FJ
    Ballesteros, A
    Santander, M
    Sanz-Gil, T
    [J]. SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 75 - 89
  • [8] SUBDIVISIONS OF N-DIMENSIONAL SPACES AND N-DIMENSIONAL GENERALIZED MAPS
    LIENHARDT, P
    [J]. PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, 1989, : 228 - 236
  • [9] Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    [J]. ANNALS OF PHYSICS, 2009, 324 (06) : 1219 - 1233
  • [10] A maximally superintegrable system on an n-dimensional space of nonconstant curvature
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (04) : 505 - 509