Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces

被引:0
|
作者
Ángel Ballesteros
Alberto Enciso
Francisco José Herranz
Orlando Ragnisco
机构
[1] Universidad de Burgos,Depto. de Física, Facultad de Ciencias
[2] Universidad Complutense,Depto. de Física Teórica II
[3] Universidad de Burgos,Depto. de Física, Escuela Politécnica Superior
[4] Università di Roma Tre and Instituto Nazionale di Fisica Nucleare sezione di Roma Tre,Dipartimento di Fisica
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The maximal superintegrability of the intrinsic harmonic oscillator potential on N-dimensional spaces with constant curvature is revisited from the point of view of sl(2)-Poisson coalgebra symmetry. It is shown how this algebraic approach leads to a straightforward definition of a new large family of quasi-maximally superintegrable perturbations of the intrinsic oscillator on such spaces. Moreover, the generalization of this construction to those N-dimensional spaces with non-constant curvature that are endowed with sl(2)-coalgebra symmetry is presented. As the first examples of the latter class of systems, both the oscillator potential on an N-dimensional Darboux space as well as several families of its quasi-maximally superintegrable anharmonic perturbations are explicitly constructed.
引用
收藏
页码:43 / 52
页数:9
相关论文
共 50 条