Nondegenerate superintegrable systems in n-dimensional Euclidean spaces

被引:9
|
作者
Kalnins, E. G. [1 ]
Kress, J. M.
Miller, W.
Pogosyan, G. S.
机构
[1] Univ Waikato, Dept Math & Stat, Hamilton, New Zealand
[2] Univ New S Wales, Sch Math, Sydney, NSW, Australia
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[4] Joint Inst Nucl Res, Theoret Phys Lab, Dubna 141980, Moscow Oblast, Russia
关键词
D O I
10.1134/S1063778807030143
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We analyze the concept of a nondegenerate superintegrable system in n-dimensional Euclidean space. Attached to this idea is the notion that every such system affords a separation of variables in one of the various types of generic elliptical coordinates that are possible in complex Euclidean space. An analysis of how these coordinates are arrived at in terms of their expression in terms of Cartesian coordinates is presented in detail. The use of well-defined limiting processes illustrates just how all these systems can be obtained from the most general nondegenerate superintegrable system in n-dimensional Euclidean space. Two examples help with the understanding of how the general results are obtained.
引用
收藏
页码:545 / 553
页数:9
相关论文
共 50 条
  • [1] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    E. G. Kalnins
    J. M. Kress
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2007, 70 : 545 - 553
  • [2] Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature
    Ballesteros, Angel
    Herranz, Francisco J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) : F51 - F59
  • [3] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ángel Ballesteros
    Alberto Enciso
    Francisco José Herranz
    Orlando Ragnisco
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 43 - 52
  • [4] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ballesteros, Angel
    Enciso, Alberto
    Jose Herranz, Francisco
    Ragnisco, Orlando
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 43 - 52
  • [5] Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties
    Kalnins, E. G.
    Kress, J. M.
    Miller, W., Jr.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [6] On superintegrable symmetry-breaking potentials in N-dimensional Euclidean space
    Kalnins, EG
    Williams, GC
    Miller, W
    Pogosyan, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (22): : 4755 - 4773
  • [7] Lines on Planes in n-Dimensional Euclidean Spaces
    Kubo, Akihiro
    FORMALIZED MATHEMATICS, 2005, 13 (03): : 389 - 397
  • [8] Maximally superintegrable Smorodinsky-Winternitz systems on the N-dimensional sphere and hyperbolic spaces
    Herranz, FJ
    Ballesteros, A
    Santander, M
    Sanz-Gil, T
    SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 75 - 89
  • [9] Frame formalism for the N-dimensional quantum Euclidean spaces
    Cerchiai, BL
    Madore, J
    Fiore, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (22-23): : 2305 - 2314
  • [10] RAY SYSTEMS IN N-DIMENSIONAL EUCLIDEAN SPACE
    SULANKE, R
    MATHEMATISCHE NACHRICHTEN, 1970, 43 (1-6) : 25 - &