Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles

被引:55
|
作者
Ballesteros, Angel [2 ]
Enciso, Alberto [3 ]
Herranz, Francisco J. [1 ]
Ragnisco, Orlando [4 ,5 ]
机构
[1] Univ Burgos, Dept Fis, Escuela Politecn Super, Burgos 09001, Spain
[2] Univ Burgos, Fac Ciencias, Dept Fis, Burgos 09001, Spain
[3] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
[4] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy
[5] Sez Roma Tre, Ist Nazl Fis Nucl, I-00146 Rome, Italy
基金
俄罗斯基础研究基金会;
关键词
Integrable systems; Lie-Poisson coalgebras; Curvature; Oscillator; Kepler-Coloumb; MIC-Kepler; Taub-NUT; Darboux spaces; SMORODINSKY-WINTERNITZ POTENTIALS; TAUB-NUT SPACETIME; MIC-KEPLER PROBLEM; YANG-MILLS THEORY; HAMILTONIAN-SYSTEMS; QUANTUM-MECHANICS; NONCONSTANT CURVATURE; HYPERBOLIC MONOPOLES; CONSTANT-CURVATURE; SYMMETRY-BREAKING;
D O I
10.1016/j.aop.2009.03.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The N-dimensional Hamiltonian H = 1/2f(vertical bar q vertical bar)(2) {p(2)+mu(2)/q(2)+Sigma(N)(i=1) b(i)/q(i)(2)} + U(vertical bar q vertical bar) is shown to be quasi-maximally superintegrable for any choice of the functions f and U. This result is proven by making use of the underlying sl(2, R)-coalgebra symmetry of H in order to obtain a set of (2N - 3) functionally independent integrals of the motion, that are explicitly given. Such constants of the motion are "universal" since all of them are independent of both f and U. This Hamiltonian describes the motion of a particle on any ND spherically symmetric curved space (whose metric is specified by f) under the action of an arbitrary central potential U, and includes simultaneously a monopole-type contribution together with N centrifugal terms that break the spherical symmetry. Moreover, we show that two appropriate choices for U provide the "intrinsic" oscillator and the KC potentials on these curved manifolds. As a byproduct, the MIC-Keplet, the Taub-NUT and the so-called multifold Kepler systems are shown to belong to this class of superintegrable Hamiltonians, and new generalizations thereof are obtained. The KC and oscillator potentials on N-dimensional generalizations of the four Darboux surfaces are discussed as well. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1219 / 1233
页数:15
相关论文
共 50 条
  • [1] Maximal superintegrability on N-dimensional curved spaces
    Ballesteros, A
    Herranz, FJ
    Santander, M
    Sanz-Gil, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : L93 - L99
  • [2] Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces
    Ballesteros, Angel
    Herranz, Francisco J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
  • [3] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ballesteros, Angel
    Enciso, Alberto
    Jose Herranz, Francisco
    Ragnisco, Orlando
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 43 - 52
  • [4] N-DIMENSIONAL INSTANTONS AND MONOPOLES
    TCHRAKIAN, DH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (01) : 166 - 169
  • [5] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ángel Ballesteros
    Alberto Enciso
    Francisco José Herranz
    Orlando Ragnisco
    [J]. Journal of Nonlinear Mathematical Physics, 2008, 15 : 43 - 52
  • [6] Superintegrability on N-dimensional spaces of constant curvature from so(N + 1) and its contractions
    F. J. Herranz
    Á. Ballesteros
    [J]. Physics of Atomic Nuclei, 2008, 71 : 905 - 913
  • [7] Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions
    Herranz, F. J.
    Ballesteros, A.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 905 - 913
  • [8] SUBDIVISIONS OF N-DIMENSIONAL SPACES AND N-DIMENSIONAL GENERALIZED MAPS
    LIENHARDT, P
    [J]. PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, 1989, : 228 - 236
  • [9] MOSAICS OF N-DIMENSIONAL SPACES
    MOLNAR, E
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 51 (3-4): : 177 - &
  • [10] N-DIMENSIONAL PACKING SPACES
    MALEEV, AV
    [J]. KRISTALLOGRAFIYA, 1995, 40 (03): : 394 - 396