Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles

被引:55
|
作者
Ballesteros, Angel [2 ]
Enciso, Alberto [3 ]
Herranz, Francisco J. [1 ]
Ragnisco, Orlando [4 ,5 ]
机构
[1] Univ Burgos, Dept Fis, Escuela Politecn Super, Burgos 09001, Spain
[2] Univ Burgos, Fac Ciencias, Dept Fis, Burgos 09001, Spain
[3] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
[4] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy
[5] Sez Roma Tre, Ist Nazl Fis Nucl, I-00146 Rome, Italy
基金
俄罗斯基础研究基金会;
关键词
Integrable systems; Lie-Poisson coalgebras; Curvature; Oscillator; Kepler-Coloumb; MIC-Kepler; Taub-NUT; Darboux spaces; SMORODINSKY-WINTERNITZ POTENTIALS; TAUB-NUT SPACETIME; MIC-KEPLER PROBLEM; YANG-MILLS THEORY; HAMILTONIAN-SYSTEMS; QUANTUM-MECHANICS; NONCONSTANT CURVATURE; HYPERBOLIC MONOPOLES; CONSTANT-CURVATURE; SYMMETRY-BREAKING;
D O I
10.1016/j.aop.2009.03.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The N-dimensional Hamiltonian H = 1/2f(vertical bar q vertical bar)(2) {p(2)+mu(2)/q(2)+Sigma(N)(i=1) b(i)/q(i)(2)} + U(vertical bar q vertical bar) is shown to be quasi-maximally superintegrable for any choice of the functions f and U. This result is proven by making use of the underlying sl(2, R)-coalgebra symmetry of H in order to obtain a set of (2N - 3) functionally independent integrals of the motion, that are explicitly given. Such constants of the motion are "universal" since all of them are independent of both f and U. This Hamiltonian describes the motion of a particle on any ND spherically symmetric curved space (whose metric is specified by f) under the action of an arbitrary central potential U, and includes simultaneously a monopole-type contribution together with N centrifugal terms that break the spherical symmetry. Moreover, we show that two appropriate choices for U provide the "intrinsic" oscillator and the KC potentials on these curved manifolds. As a byproduct, the MIC-Keplet, the Taub-NUT and the so-called multifold Kepler systems are shown to belong to this class of superintegrable Hamiltonians, and new generalizations thereof are obtained. The KC and oscillator potentials on N-dimensional generalizations of the four Darboux surfaces are discussed as well. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1219 / 1233
页数:15
相关论文
共 50 条
  • [31] On the Rigid Rotation Concept in n-Dimensional Spaces
    Daniele Mortari
    [J]. The Journal of the Astronautical Sciences, 2001, 49 (3) : 401 - 420
  • [32] Lines on Planes in n-Dimensional Euclidean Spaces
    Kubo, Akihiro
    [J]. FORMALIZED MATHEMATICS, 2005, 13 (03): : 389 - 397
  • [33] On the rigid rotation concept in n-dimensional spaces
    Department of Aerospace Engineering, Texas A and M University, College Station, TX 77843-3141, United States
    [J]. Journal of the Astronautical Sciences, 2002, 49 (03): : 401 - 420
  • [34] Attitude and orbit error in n-dimensional spaces
    Daniele Mortari
    Sante R. Scuro
    Christian Bruccoleri
    [J]. The Journal of the Astronautical Sciences, 2006, 54 : 467 - 484
  • [35] N-DIMENSIONAL AREA AND CONTENT IN MINKOWSKI SPACES
    HOLMES, RD
    THOMPSON, AC
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1979, 85 (01) : 77 - 110
  • [36] Attitude and orbit error in n-dimensional spaces
    Mortari, Daniele
    Scuro, Sante R.
    Bruccoleri, Christian
    [J]. JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2006, 54 (3-4): : 467 - 484
  • [37] Multistage n-dimensional universal spaces and extensions
    Pasynkov, B. A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (04) : 730 - 744
  • [38] Tietze Extension Theorem for n-dimensional Spaces
    Pak, Karol
    [J]. FORMALIZED MATHEMATICS, 2014, 22 (01): : 11 - 19
  • [39] Attitude and orbit error in n-dimensional spaces
    Mortari, D
    Scuro, SR
    Bruccoleri, C
    [J]. MALCOLM D. SHUSTER ASTRONAUTICS SYMPOSIUM, 2006, 122 : 301 - +
  • [40] Curved n-dimensional varieties containing n systems of straight lines
    Barrau, JA
    [J]. PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1932, 35 (1/5): : 61 - 69