On the Hamiltonian Hopf bifurcations in the 3D Hénon-Heiles family

被引:15
|
作者
Hanßmann H. [1 ,2 ]
Van Der Meer J.-C. [3 ]
机构
[1] Program for Applied and Computational Mathematics, Princeton University, Princeton, NJ
[2] Institut für Reine und Angewandte Mathematik, RWTH Aachen, Aachen
[3] Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, 5600 MB, Eindhoven
关键词
Bifurcation; Hamiltonian Hopf bifurcation; Hamiltonian system; Hénon-Heiles family; Normal form; Reduction; Relative equilibria; Transversality conditions;
D O I
10.1023/A:1016343317119
中图分类号
学科分类号
摘要
An axially symmetric perturbed isotropic harmonic oscillator undergoes several bifurcations as the parameter λ adjusting the relative strength of the two terms in the cubic potential is varied. We show that three of these bifurcations are Hamiltonian Hopf bifurcations. To this end we analyse an appropriately chosen normal form. It turns out that the linear behaviour is not that of a typical Hamiltonian Hopf bifurcation as the eigen-values completely vanish at the bifurcation. However, the nonlinear structure is that of a Hamiltonian Hopf bifurcation. The result is obtained by formulating geometric criteria involving the normalized Hamiltonian and the reduced phase space. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:675 / 695
页数:20
相关论文
共 50 条
  • [1] A Degenerate Bifurcation In The Hénon-Heiles Family
    Heinz Hanßmann
    Britta Sommer
    Celestial Mechanics and Dynamical Astronomy, 2001, 81 : 249 - 261
  • [2] An overview of the escape dynamics in the H,non-Heiles Hamiltonian system
    Zotos, Euaggelos E.
    MECCANICA, 2017, 52 (11-12) : 2615 - 2630
  • [3] Explicit integration of the Hénon-Heiles Hamiltonians
    Robert Conte
    Micheline Musette
    Caroline Verhoeven
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 212 - 227
  • [4] A Hierarchy of Multidimensional Hénon-Heiles Systems
    Yunbo Zeng Department of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2000, 16 (03) : 527 - 534
  • [5] Periodic Solutions, Stability and Non-Integrability in a Generalized Hénon-Heiles Hamiltonian System
    Dante Carrasco
    Claudio Vidal
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 199 - 213
  • [6] A New Discrete Hénon-Heiles System
    Alan K Common
    Andrew N W Hone
    Micheline Musette
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 27 - 40
  • [7] A Hierarchy of Multidimensional Hénon-Heiles Systems
    Yunbo Zeng
    Acta Mathematica Sinica, 2000, 16 : 527 - 534
  • [8] Lyapunov exponents in the Hénon-Heiles problem
    I. I. Shevchenko
    A. V. Mel’nikov
    Journal of Experimental and Theoretical Physics Letters, 2003, 77 : 642 - 646
  • [9] Non-integrability of Hénon-Heiles system
    Wenlei Li
    Shaoyun Shi
    Celestial Mechanics and Dynamical Astronomy, 2011, 109 : 1 - 12
  • [10] Periodic trajectories near degenerate equilibria in the Hénon-Heiles and Yang-Mills Hamiltonian systems
    Maciejewski A.
    Radzki W.
    Rybicki S.
    Journal of Dynamics and Differential Equations, 2005, 17 (3) : 475 - 488