On the Hamiltonian Hopf bifurcations in the 3D Hénon-Heiles family

被引:15
|
作者
Hanßmann H. [1 ,2 ]
Van Der Meer J.-C. [3 ]
机构
[1] Program for Applied and Computational Mathematics, Princeton University, Princeton, NJ
[2] Institut für Reine und Angewandte Mathematik, RWTH Aachen, Aachen
[3] Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, 5600 MB, Eindhoven
关键词
Bifurcation; Hamiltonian Hopf bifurcation; Hamiltonian system; Hénon-Heiles family; Normal form; Reduction; Relative equilibria; Transversality conditions;
D O I
10.1023/A:1016343317119
中图分类号
学科分类号
摘要
An axially symmetric perturbed isotropic harmonic oscillator undergoes several bifurcations as the parameter λ adjusting the relative strength of the two terms in the cubic potential is varied. We show that three of these bifurcations are Hamiltonian Hopf bifurcations. To this end we analyse an appropriately chosen normal form. It turns out that the linear behaviour is not that of a typical Hamiltonian Hopf bifurcation as the eigen-values completely vanish at the bifurcation. However, the nonlinear structure is that of a Hamiltonian Hopf bifurcation. The result is obtained by formulating geometric criteria involving the normalized Hamiltonian and the reduced phase space. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:675 / 695
页数:20
相关论文
共 50 条
  • [41] 3D stereo-tomography based on the non-reduced Hamiltonian
    Yang Kai
    Xing Feng-Yuan
    Li Zhen-Wei
    Wang Yu-Xiang
    Ni Yao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2016, 59 (09): : 3366 - 3378
  • [42] CRITICAL PROPERTIES OF 3D ISING SYSTEMS WITH NON-HAMILTONIAN DYNAMICS
    HERINGA, JR
    BLOTE, HWJ
    HOOGLAND, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1994, 5 (03): : 589 - 598
  • [43] 3D CFD analysis of hydraulic flow in bifurcations
    Kostić T.
    Theobald S.
    WasserWirtschaft, 2021, 111 (12) : 32 - 38
  • [44] 3D CFD Analysis of Hydraulic Flow in Bifurcations
    Kostic, Tino
    Theobald, Stephan
    WasserWirtschaft, 2024, 114 (11) : 18 - 25
  • [45] 3D CFD sediment flow analysis in bifurcations
    Kostic T.
    Theobald S.
    WasserWirtschaft, 2021, 111 (12): : 39 - 46
  • [46] The flatness of bifurcations in 3D neuronal branching patterns
    Jaap van Pelt
    Harry BM Uylings
    BMC Neuroscience, 12 (Suppl 1)
  • [47] 二维Hénon-Heiles势及其变形势体系逃逸率与分形维数的研究
    张延惠
    沈志朋
    蔡祥吉
    徐秀兰
    高嵩
    物理学报, 2015, 64 (23) : 26 - 32
  • [48] HAMILTONIAN LIMIT OF THE 3D ZAMOLODCHIKOV MODEL
    BAXTER, RJ
    QUISPEL, GRW
    JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (3-4) : 411 - 430
  • [49] On the Hamiltonian form of 3D massive gravity
    Hohm, Olaf
    Routh, Alasdair
    Townsend, Paul K.
    Zhang, Baocheng
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [50] Hopf bifurcation at infinity in 3D Relay systems
    Freire, E.
    Ponce, E.
    Ros, J.
    Vela, E.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 444