On the Hamiltonian Hopf bifurcations in the 3D Hénon-Heiles family

被引:15
|
作者
Hanßmann H. [1 ,2 ]
Van Der Meer J.-C. [3 ]
机构
[1] Program for Applied and Computational Mathematics, Princeton University, Princeton, NJ
[2] Institut für Reine und Angewandte Mathematik, RWTH Aachen, Aachen
[3] Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, 5600 MB, Eindhoven
关键词
Bifurcation; Hamiltonian Hopf bifurcation; Hamiltonian system; Hénon-Heiles family; Normal form; Reduction; Relative equilibria; Transversality conditions;
D O I
10.1023/A:1016343317119
中图分类号
学科分类号
摘要
An axially symmetric perturbed isotropic harmonic oscillator undergoes several bifurcations as the parameter λ adjusting the relative strength of the two terms in the cubic potential is varied. We show that three of these bifurcations are Hamiltonian Hopf bifurcations. To this end we analyse an appropriately chosen normal form. It turns out that the linear behaviour is not that of a typical Hamiltonian Hopf bifurcation as the eigen-values completely vanish at the bifurcation. However, the nonlinear structure is that of a Hamiltonian Hopf bifurcation. The result is obtained by formulating geometric criteria involving the normalized Hamiltonian and the reduced phase space. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:675 / 695
页数:20
相关论文
共 50 条
  • [31] 粒子在Hénon-Heiles势中的逃逸动力学模拟(英文)
    王德华
    冯攸永
    黄凯云
    原子与分子物理学报, 2010, 27 (02) : 269 - 274
  • [32] Hopf bifurcations in 3D competitive system with mixing exponential and rational growth rates
    Liu, Yujuan
    Lu, Qiong
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378 (378)
  • [33] CKP and BKP Equations Related to the Generalized Quartic Hénon–Heiles Hamiltonian
    M. Musette
    C. Verhoeven
    Theoretical and Mathematical Physics, 2003, 137 : 1561 - 1573
  • [34] Liouvillian integrability of the three-dimensional generalized Hénon–Heiles Hamiltonian
    Idriss El Fakkousy
    Jaouad Kharbach
    Walid Chatar
    Mohamed Benkhali
    Abdellah Rezzouk
    Mohammed Ouazzani-Jamil
    The European Physical Journal Plus, 135
  • [35] ALGORITHM FOR AMPLITUDE CONTROL OF LIMIT CYCLES EMERGING FROM HOPF BIFURCATIONS IN 3D SYSTEMS
    Liu, Suhua
    Tang, Jiashi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (01): : 171 - 186
  • [36] Periodic Orbits for a Fifth-Order Generalized Hénon–Heiles Hamiltonian System
    M. Alvarez-Ramírez
    J. Lino Cornelio
    M. Medina
    Lobachevskii Journal of Mathematics, 2022, 43 : 1 - 9
  • [37] Hopf-Like Bifurcations and Asymptotic Stability in a Class of 3D Piecewise Linear Systems with Applications
    Rony Cristiano
    Durval J. Tonon
    Mariana Q. Velter
    Journal of Nonlinear Science, 2021, 31
  • [38] Hopf-Like Bifurcations and Asymptotic Stability in a Class of 3D Piecewise Linear Systems with Applications
    Cristiano, Rony
    Tonon, Durval J.
    Velter, Mariana Q.
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (04)
  • [39] On the Bifurcations of a 3D Symmetric Dynamical System
    Constantinescu, Dana
    SYMMETRY-BASEL, 2023, 15 (04):
  • [40] Hopf-like bifurcations and multistability in a class of 3D Filippov systems with generalized Liénard's form
    Wang, Fanrui
    Wei, Zhouchao
    Zhang, Wei
    Kapitaniak, Tomasz
    CHAOS, 2024, 34 (12)