Lyapunov exponents in the Hénon-Heiles problem

被引:0
|
作者
I. I. Shevchenko
A. V. Mel’nikov
机构
[1] Russian Academy of Sciences,Pulkovo Observatory
关键词
05.45.Pq;
D O I
暂无
中图分类号
学科分类号
摘要
The maximal Lyapunov characteristic exponent of chaotic motion was calculated as a function of the system energy by numerical integration of the Hénon-Heiles problem. Contrary to the conclusions of Benettin et al.
引用
收藏
页码:642 / 646
页数:4
相关论文
共 50 条
  • [1] Lyapunov exponents in the Henon-Heiles problem
    Shevchenko, II
    Mel'nikov, AV
    JETP LETTERS, 2003, 77 (12) : 642 - 646
  • [2] Explicit integration of the Hénon-Heiles Hamiltonians
    Robert Conte
    Micheline Musette
    Caroline Verhoeven
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 212 - 227
  • [3] A Hierarchy of Multidimensional Hénon-Heiles Systems
    Yunbo Zeng Department of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2000, 16 (03) : 527 - 534
  • [4] A New Discrete Hénon-Heiles System
    Alan K Common
    Andrew N W Hone
    Micheline Musette
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 27 - 40
  • [5] A Hierarchy of Multidimensional Hénon-Heiles Systems
    Yunbo Zeng
    Acta Mathematica Sinica, 2000, 16 : 527 - 534
  • [6] A Degenerate Bifurcation In The Hénon-Heiles Family
    Heinz Hanßmann
    Britta Sommer
    Celestial Mechanics and Dynamical Astronomy, 2001, 81 : 249 - 261
  • [7] Non-integrability of Hénon-Heiles system
    Wenlei Li
    Shaoyun Shi
    Celestial Mechanics and Dynamical Astronomy, 2011, 109 : 1 - 12
  • [8] An overview of the escape dynamics in the H,non-Heiles Hamiltonian system
    Zotos, Euaggelos E.
    MECCANICA, 2017, 52 (11-12) : 2615 - 2630
  • [9] A New Case of Separability in a Quartic Hénon-Heiles System
    Nicola Sottocornola
    Journal of Nonlinear Mathematical Physics, 2021, 28 : 303 - 308
  • [10] On two nonintegrable cases of the generalized Hénon-Heiles system
    S. Yu. Vernov
    E. I. Timoshkova
    Physics of Atomic Nuclei, 2005, 68 : 1947 - 1955