Locally piecewise affine functions and their order structure

被引:0
|
作者
S. Adeeb
V. G. Troitsky
机构
[1] University of Alberta,Department of Civil and Environmental Engineering
[2] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Positivity | 2017年 / 21卷
关键词
Affine function; Piecewise affine function; Locally piecewise affine function; Vector lattice; Sublattice; Primary: 46A40; Secondary: 46E05;
D O I
暂无
中图分类号
学科分类号
摘要
Piecewise affine functions on subsets of Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^m$$\end{document} were studied in Aliprantis et al. (Macroecon Dyn 10(1):77–99, 2006), Aliprantis et al. (J Econometrics 136(2):431–456, 2007), Aliprantis and Tourky (Cones and duality, 2007), Ovchinnikov (Beitra¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\mathrm{a}}$$\end{document}ge Algebra Geom 43:297–302, 2002). In this paper we study a more general concept of a locally piecewise affine function. We characterize locally piecewise affine functions in terms of components and regions. We prove that a positive function is locally piecewise affine iff it is the supremum of a locally finite sequence of piecewise affine functions. We prove that locally piecewise affine functions are uniformly dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}, while piecewise affine functions are sequentially order dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}. This paper is partially based on Adeeb (Locally piece-wise affine functions, 2014)
引用
收藏
页码:213 / 221
页数:8
相关论文
共 50 条
  • [41] Qualitative analysis of nonlinear biochemical networks with piecewise-affine functions
    Musters, M. W. J. M.
    de Jong, H.
    van den Bosch, P. P. J.
    van Riel, N. A. W.
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2007, 4416 : 727 - +
  • [42] PIECEWISE-AFFINE DIFFERENTIATION EQUATION OF THE 1ST ORDER
    GILDERMAN, YI
    SOROKINA, EM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1988, (11): : 64 - 65
  • [43] Error Bounds of Constrained Quadratic Functions and Piecewise Affine Inequality Systems
    K.F. Ng
    X.Y. Zheng
    Journal of Optimization Theory and Applications, 2003, 118 : 601 - 618
  • [44] On Holder global optimization method using piecewise affine bounding functions
    Chenouf, Chahinaz
    Rahal, Mohamed
    NUMERICAL ALGORITHMS, 2023, 94 (02) : 905 - 935
  • [45] Mortality of iterated piecewise affine functions over the integers: Decidability and complexity
    Ben-Amram, Amir M.
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2015, 4 (01): : 19 - 56
  • [46] Locally ideal formulations for piecewise linear functions with indicator variables
    Sridhar, Srikrishna
    Linderoth, Jeff
    Luedtke, James
    OPERATIONS RESEARCH LETTERS, 2013, 41 (06) : 627 - 632
  • [47] On the Lower Order of Locally Univalent Functions
    Christian Pommerenke
    Computational Methods and Function Theory, 2008, 8 (2) : 373 - 384
  • [48] Shrinkage Strategies for Structure Selection and Identification of Piecewise Affine Models
    Breschi, Valentina
    Mejari, Manas
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1626 - 1631
  • [49] Characterizing regions of attraction for piecewise affine systems by continuity of discrete transition functions
    Yu Chen
    Yue Sun
    Chun-Sen Tang
    Yu-Gang Su
    Aiguo Patrick Hu
    Nonlinear Dynamics, 2017, 90 : 2093 - 2110
  • [50] Characterizing regions of attraction for piecewise affine systems by continuity of discrete transition functions
    Chen, Yu
    Sun, Yue
    Tang, Chun-Sen
    Su, Yu-Gang
    Hu, Aiguo Patrick
    NONLINEAR DYNAMICS, 2017, 90 (03) : 2093 - 2110