Locally piecewise affine functions and their order structure

被引:0
|
作者
S. Adeeb
V. G. Troitsky
机构
[1] University of Alberta,Department of Civil and Environmental Engineering
[2] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Positivity | 2017年 / 21卷
关键词
Affine function; Piecewise affine function; Locally piecewise affine function; Vector lattice; Sublattice; Primary: 46A40; Secondary: 46E05;
D O I
暂无
中图分类号
学科分类号
摘要
Piecewise affine functions on subsets of Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^m$$\end{document} were studied in Aliprantis et al. (Macroecon Dyn 10(1):77–99, 2006), Aliprantis et al. (J Econometrics 136(2):431–456, 2007), Aliprantis and Tourky (Cones and duality, 2007), Ovchinnikov (Beitra¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\mathrm{a}}$$\end{document}ge Algebra Geom 43:297–302, 2002). In this paper we study a more general concept of a locally piecewise affine function. We characterize locally piecewise affine functions in terms of components and regions. We prove that a positive function is locally piecewise affine iff it is the supremum of a locally finite sequence of piecewise affine functions. We prove that locally piecewise affine functions are uniformly dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}, while piecewise affine functions are sequentially order dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}. This paper is partially based on Adeeb (Locally piece-wise affine functions, 2014)
引用
收藏
页码:213 / 221
页数:8
相关论文
共 50 条
  • [21] Maximizing concave piecewise affine functions on the unitary group
    Gaubert, Stephane
    Qu, Zheng
    Sridharan, Srinivas
    OPTIMIZATION LETTERS, 2016, 10 (04) : 655 - 665
  • [22] Homogeneous polynomial Lyapunov functions for piecewise affine systems
    Xu, J
    Xie, LH
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 581 - 586
  • [23] Piecewise Affine Functions, Sturmian Sequences and Wang Tiles
    Kari, Jarkko
    FUNDAMENTA INFORMATICAE, 2016, 145 (03) : 257 - 277
  • [24] STRICTLY LOCALLY ORDER AFFINE COMPLETE LATTICES
    KAARLI, K
    TAHT, K
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1993, 10 (03): : 261 - 270
  • [25] Locally affine geometries of order 2 where shrinkings are affine expansions
    Pasini, Antonio
    NOTE DI MATEMATICA, 2005, 24 (02): : 97 - 133
  • [26] Signal Approximations Based on Nonlinear and Optimal Piecewise Affine Functions
    Diop, El Hadji S.
    Ngom, Ata
    Prasath, V. B. Surya
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (04) : 2366 - 2384
  • [27] Formalizing Piecewise Affine Activation Functions of Neural Networks in COQ
    Aleksandrov, Andrei
    Voellinger, Kim
    NASA FORMAL METHODS, NFM 2023, 2023, 13903 : 62 - 78
  • [28] Exact representation of piecewise affine functions via neural networks
    Darup, Moritz Schulze
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 1073 - 1078
  • [29] Piecewise affine modeling using radial basis functions network
    Harata, Y
    Ito, T
    Hashimoto, Y
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 1994 - 1998
  • [30] Irredundant lattice lattice representations of continuous piecewise affine functions
    Xu, Jun
    van den Boom, Ton J. J.
    De Schutter, Bart
    Wang, Shuning
    AUTOMATICA, 2016, 70 : 109 - 120