Locally piecewise affine functions and their order structure

被引:0
|
作者
S. Adeeb
V. G. Troitsky
机构
[1] University of Alberta,Department of Civil and Environmental Engineering
[2] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Positivity | 2017年 / 21卷
关键词
Affine function; Piecewise affine function; Locally piecewise affine function; Vector lattice; Sublattice; Primary: 46A40; Secondary: 46E05;
D O I
暂无
中图分类号
学科分类号
摘要
Piecewise affine functions on subsets of Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^m$$\end{document} were studied in Aliprantis et al. (Macroecon Dyn 10(1):77–99, 2006), Aliprantis et al. (J Econometrics 136(2):431–456, 2007), Aliprantis and Tourky (Cones and duality, 2007), Ovchinnikov (Beitra¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\mathrm{a}}$$\end{document}ge Algebra Geom 43:297–302, 2002). In this paper we study a more general concept of a locally piecewise affine function. We characterize locally piecewise affine functions in terms of components and regions. We prove that a positive function is locally piecewise affine iff it is the supremum of a locally finite sequence of piecewise affine functions. We prove that locally piecewise affine functions are uniformly dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}, while piecewise affine functions are sequentially order dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}. This paper is partially based on Adeeb (Locally piece-wise affine functions, 2014)
引用
收藏
页码:213 / 221
页数:8
相关论文
共 50 条
  • [31] Digital architectures implementing piecewise-affine functions: an overview
    Poggi, Tomaso
    Storace, Marco
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 3304 - 3307
  • [32] Signal Approximations Based on Nonlinear and Optimal Piecewise Affine Functions
    El Hadji S. Diop
    Ata Ngom
    V. B. Surya Prasath
    Circuits, Systems, and Signal Processing, 2023, 42 : 2366 - 2384
  • [33] Continuous and Piecewise Affine Lyapunov Functions using the Yoshizawa Construction
    Hafstein, Sigurour
    Kellett, Christopher M.
    Li, Huijuan
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 548 - 553
  • [34] Minimal Conjunctive Normal Expression of Continuous Piecewise Affine Functions
    Xu, Jun
    van den Boom, Ton J. J.
    De Schutter, Bart
    Luo, Xiong-Lin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (05) : 1340 - 1345
  • [35] An L2-gain analysis of piecewise affine systems by piecewise quadratic storage functions
    Morinaga, E
    Hirata, K
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5176 - 5181
  • [36] Asymptotic Stability of Piecewise Affine Systems With Filippov Solutions via Discontinuous Piecewise Lyapunov Functions
    Iervolino, Raffaele
    Trenn, Stephan
    Vasca, Francesco
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1513 - 1528
  • [37] Piecewise Linear Approximation of Generators Cost Functions Using Max-Affine Functions
    Ahmadi, Hamed
    Marti, Jose R.
    Moshref, Ali
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [38] OPTIMAL CONTROL OF PIECEWISE AFFINE SYSTEMS WITH PIECEWISE AFFINE STATE FEEDBACK
    Wu, Changzhi
    Teo, Kok Lay
    Rehbock, Volker
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (04) : 737 - 747
  • [39] Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps
    Buzzi, J
    Keller, G
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 689 - 716
  • [40] Error bounds of constrained quadratic functions and piecewise affine inequality systems
    Ng, KF
    Zheng, XY
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) : 601 - 618