Locally piecewise affine functions and their order structure

被引:0
|
作者
S. Adeeb
V. G. Troitsky
机构
[1] University of Alberta,Department of Civil and Environmental Engineering
[2] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Positivity | 2017年 / 21卷
关键词
Affine function; Piecewise affine function; Locally piecewise affine function; Vector lattice; Sublattice; Primary: 46A40; Secondary: 46E05;
D O I
暂无
中图分类号
学科分类号
摘要
Piecewise affine functions on subsets of Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^m$$\end{document} were studied in Aliprantis et al. (Macroecon Dyn 10(1):77–99, 2006), Aliprantis et al. (J Econometrics 136(2):431–456, 2007), Aliprantis and Tourky (Cones and duality, 2007), Ovchinnikov (Beitra¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\mathrm{a}}$$\end{document}ge Algebra Geom 43:297–302, 2002). In this paper we study a more general concept of a locally piecewise affine function. We characterize locally piecewise affine functions in terms of components and regions. We prove that a positive function is locally piecewise affine iff it is the supremum of a locally finite sequence of piecewise affine functions. We prove that locally piecewise affine functions are uniformly dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}, while piecewise affine functions are sequentially order dense in C(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\mathbb R^m)$$\end{document}. This paper is partially based on Adeeb (Locally piece-wise affine functions, 2014)
引用
收藏
页码:213 / 221
页数:8
相关论文
共 50 条
  • [1] Locally piecewise affine functions and their order structure
    Adeeb, S.
    Troitsky, V. G.
    POSITIVITY, 2017, 21 (01) : 213 - 221
  • [2] LOCALLY AFFINE FUNCTIONS
    Udrea, Corneliu
    JOURNAL OF SCIENCE AND ARTS, 2010, (02): : 273 - 280
  • [3] Representations of Continuous Piecewise Affine Functions
    V. N. Malozemov
    G. Sh. Tamasyan
    Vestnik St. Petersburg University, Mathematics, 2022, 55 : 39 - 47
  • [4] Representations of Continuous Piecewise Affine Functions
    Malozemov, V. N.
    Tamasyan, G. Sh.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2022, 55 (01) : 39 - 47
  • [5] A family of piecewise affine control Lyapunov functions
    Ngoc Anh Nguyen
    Olaru, Sorin
    AUTOMATICA, 2018, 90 : 212 - 219
  • [6] Piecewise affine approximations for functions of bounded variation
    Jan Kristensen
    Filip Rindler
    Numerische Mathematik, 2016, 132 : 329 - 346
  • [7] Piecewise affine approximations for functions of bounded variation
    Kristensen, Jan
    Rindler, Filip
    NUMERISCHE MATHEMATIK, 2016, 132 (02) : 329 - 346
  • [8] Nonlocal Error Bounds for Piecewise Affine Functions
    Dolgopolik, M. V.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2023, 31 (03)
  • [9] REPRESENTATION OF PIECEWISE AFFINE FUNCTIONS AS A DIFFERENCE OF POLYHEDRAL
    Angelov, T. A.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (01): : 4 - 18
  • [10] Discontinuous piecewise quadratic Lyapunov functions for planar piecewise affine systems
    Eghbal, Najmeh
    Pariz, Naser
    Karimpour, Ali
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (02) : 586 - 593