Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result

被引:0
|
作者
M. M. Cavalcanti
V. N. Domingos Cavalcanti
R. Fukuoka
J. A. Soriano
机构
[1] State University of Maringá,Department of Mathematics
关键词
Manifold; Wave Equation; Riemannian Manifold; Open Subset; Smooth Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a n-dimensional (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\geqq 2}$$\end{document}) compact Riemannian manifold with boundary where g denotes a Riemannian metric of class C∞. This paper is concerned with the study of the wave equation on (M, g) with locally distributed damping, described by\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left. \begin{array}{l} u_{tt} - \Delta_{{\bf g}}u+ a(x)\,g(u_{t})=0,\quad\hbox{on\ \thinspace}{M}\times \left] 0,\infty\right[ ,u=0\,\hbox{on}\,\partial M \times \left] 0,\infty \right[, \end{array} \right. $$\end{document}where ∂M represents the boundary of M and a(x) g(ut) is the damping term. The main goal of the present manuscript is to generalize our previous result in Cavalcanti et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for n-dimensional compact Riemannian manifolds (M, g) with boundary in two ways: (i) by reducing arbitrarily the region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_\ast \subset M}$$\end{document} where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely, a precise part of radially symmetric subsets. An analogous result holds for compact Riemannian manifolds without boundary.
引用
收藏
页码:925 / 964
页数:39
相关论文
共 50 条
  • [31] Asymptotic stability for a strongly coupled Klein-Gordon system in an inhomogeneous medium with locally distributed damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Mansouri, S.
    Gonzalez Martinez, V. H.
    Hajjej, Z.
    Astudillo Rojas, M. R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) : 447 - 489
  • [32] STRONG ASYMPTOTIC STABILITY FOR A BEAM EQUATION WITH WEAK DAMPING
    FEIREISL, E
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 : 365 - 371
  • [34] Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds
    Andrade, D
    Cavalcanti, MA
    Cavalcanti, VND
    Oquendo, HP
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2006, 8 (02) : 173 - 193
  • [35] Lp-asymptotic stability analysis of a 1D wave equation with a nonlinear damping
    Chitour, Yacine
    Marx, Swann
    Prieur, Christophe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8107 - 8131
  • [36] Asymptotic behaviour of the wave equation with nonlocal weak damping and anti-damping
    Zhao, Chunyan
    Zhao, Chunxiang
    Zhong, Chengkui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [37] UNIFORM DECAY RATES FOR THE WAVE EQUATION WITH NONLINEAR DAMPING LOCALLY DISTRIBUTED IN UNBOUNDED DOMAINS WITH FINITE MEASURE
    Cavalcanti, Marcelo M.
    Dias Silva, Flavio R.
    Domingos Cavalcanti, Valeria N.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 545 - 580
  • [38] Existence and asymptotic stability for evolution problems on manifolds with damping and source terms
    Cavalcanti, MM
    Cavalcanti, VND
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) : 109 - 127
  • [39] Uniform decay rate estimates for the semilinear wave equation in inhomogeneous medium with locally distributed nonlinear damping
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Fukuoka, Ryuichi
    Pampu, Ademir B.
    Astudillo, Maria
    NONLINEARITY, 2018, 31 (09) : 4031 - 4064
  • [40] Stability results for the wave equation with indefinite damping
    Freitas, P
    Zuazua, E
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 132 (02) : 338 - 352