Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result

被引:0
|
作者
M. M. Cavalcanti
V. N. Domingos Cavalcanti
R. Fukuoka
J. A. Soriano
机构
[1] State University of Maringá,Department of Mathematics
关键词
Manifold; Wave Equation; Riemannian Manifold; Open Subset; Smooth Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a n-dimensional (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\geqq 2}$$\end{document}) compact Riemannian manifold with boundary where g denotes a Riemannian metric of class C∞. This paper is concerned with the study of the wave equation on (M, g) with locally distributed damping, described by\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left. \begin{array}{l} u_{tt} - \Delta_{{\bf g}}u+ a(x)\,g(u_{t})=0,\quad\hbox{on\ \thinspace}{M}\times \left] 0,\infty\right[ ,u=0\,\hbox{on}\,\partial M \times \left] 0,\infty \right[, \end{array} \right. $$\end{document}where ∂M represents the boundary of M and a(x) g(ut) is the damping term. The main goal of the present manuscript is to generalize our previous result in Cavalcanti et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for n-dimensional compact Riemannian manifolds (M, g) with boundary in two ways: (i) by reducing arbitrarily the region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_\ast \subset M}$$\end{document} where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely, a precise part of radially symmetric subsets. An analogous result holds for compact Riemannian manifolds without boundary.
引用
收藏
页码:925 / 964
页数:39
相关论文
共 50 条
  • [21] Exponential Asymptotic Stability for the Klein Gordon Equation on Non-compact Riemannian Manifolds
    Bortot, C. A.
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Piccione, P.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (02): : 219 - 265
  • [22] Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term
    Park, Jong Yeoul
    Ha, Tae Gab
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [23] EXPONENTIAL STABILITY FOR THE 2-D DEFOCUSING SCHRODINGER EQUATION WITH LOCALLY DISTRIBUTED DAMPING
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Fukuoka, R.
    Natali, F.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (7-8) : 617 - 636
  • [24] EXPONENTIAL STABILITY FOR THE DEFOCUSING SEMILINEAR SCHRODINGER EQUATION WITH LOCALLY DISTRIBUTED DAMPING ON A BOUNDED DOMAIN
    Bortot, Cesar Augusto
    Correa, Wellington Jose
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (3-4) : 273 - 300
  • [25] Exponential stability of the transmission wave equation with a distributed delay term in the boundary damping
    Moumen, Latifa
    Rebiai, Salah-Eddine
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3459 - 3486
  • [26] Exponential stability of the transmission wave equation with a distributed delay term in the boundary damping
    Latifa Moumen
    Salah-Eddine Rebiai
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3459 - 3486
  • [27] Stability analysis of a 1D wave equation with a nonmonotone distributed damping
    Marx, Swann
    Chitour, Yacine
    Prieur, Christophe
    IFAC PAPERSONLINE, 2019, 52 (16): : 36 - 41
  • [28] Lp asymptotic stability of 1D damped wave equation with nonlinear damping
    Chitour, Y.
    Kafnemer, M.
    Martinez, P.
    Mebkhout, B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 255
  • [29] Global solvability and asymptotic stability for the wave equation with nonlinear boundary damping and source term
    Cavalcanti, MM
    Cavalcanti, VND
    Soriano, JA
    CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 161 - +
  • [30] An exponential stability result for the wave equation
    Morgül, Ö
    AUTOMATICA, 2002, 38 (04) : 731 - 735