Algorithmic complexity of Greenberg’s conjecture

被引:0
|
作者
Georges Gras
机构
[1] In retirement from Franche-Comté University,
来源
Archiv der Mathematik | 2021年 / 117卷
关键词
Greenberg’s conjecture; -Class groups; Class field theory; -adic regulators; -ramification theory; Iwasawa’s theory; 11R23; 11R29; 11R37; 11Y40;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a totally real number field and p a prime. We show that the “complexity” of Greenberg’s conjecture (λ=μ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = \mu = 0$$\end{document}) is governed (under Leopoldt’s conjecture) by the finite torsion group Tk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {T}}}_k$$\end{document} of the Galois group of the maximal abelian p-ramified pro-p-extension of k, by means of images, in Tk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {T}}}_k$$\end{document}, of ideal norms from the layers kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document} of the cyclotomic tower (Theorem 4.2). These images are obtained via the algorithm computing, by “unscrewing”, the p-class group of kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document}. Conjecture 4.3 of equidistribution of these images would show that the number of steps bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_n$$\end{document} of the algorithms is bounded as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document}, so that (Theorem 3.3) Greenberg’s conjecture, hopeless within the sole framework of Iwasawa’s theory, would hold true “with probability 1”.
引用
收藏
页码:277 / 289
页数:12
相关论文
共 50 条
  • [41] The history of Algorithmic complexity
    Nasar, Audrey A.
    MATHEMATICS ENTHUSIAST, 2016, 13 (03): : 217 - 242
  • [42] Chaos and algorithmic complexity
    Batterman, RW
    White, H
    FOUNDATIONS OF PHYSICS, 1996, 26 (03) : 307 - 336
  • [43] Algorithmic Folding Complexity
    Cardinal, Jean
    Demaine, Erik D.
    Demaine, Martin L.
    Imahori, Shinji
    Ito, Tsuyoshi
    Kiyomi, Masashi
    Langerman, Stefan
    Uehara, Ryuhei
    Uno, Takeaki
    GRAPHS AND COMBINATORICS, 2011, 27 (03) : 341 - 351
  • [44] Algorithmic Folding Complexity
    Cardinal, Jean
    Demaine, Erik D.
    Demaine, Martin L.
    Imahori, Shinji
    Langerman, Stefan
    Uehara, Ryuhei
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 452 - +
  • [45] Algorithmic theory of complexity
    Polizzi, Gaspare
    NUNCIUS-JOURNAL OF THE HISTORY OF SCIENCE, 2007, 22 (01): : 176 - 177
  • [46] Algorithmic Relative Complexity
    Cerra, Daniele
    Datcu, Mihai
    ENTROPY, 2011, 13 (04) : 902 - 914
  • [47] Formules de genres et conjecture de Greenberg
    Thong Nguyen Quang Do
    ANNALES MATHEMATIQUES DU QUEBEC, 2018, 42 (02): : 267 - 280
  • [48] Minor equalities and certain weak forms of the Greenberg conjecture
    Badino, R
    Do, TNQ
    MANUSCRIPTA MATHEMATICA, 2005, 116 (03) : 323 - 340
  • [49] ALGORITHMIC PROOF OF THE EPSILON CONSTANT CONJECTURE
    Bley, Werner
    Debeerst, Ruben
    MATHEMATICS OF COMPUTATION, 2013, 82 (284) : 2363 - 2387
  • [50] Algorithmic solution of the quantum Serre conjecture
    Artamonov, VA
    FIRST INTERNATIONAL TAINAN-MOSCOW ALGEBRA WORKSHOP, 1996, : 123 - 137