Algorithmic complexity of Greenberg’s conjecture

被引:0
|
作者
Georges Gras
机构
[1] In retirement from Franche-Comté University,
来源
Archiv der Mathematik | 2021年 / 117卷
关键词
Greenberg’s conjecture; -Class groups; Class field theory; -adic regulators; -ramification theory; Iwasawa’s theory; 11R23; 11R29; 11R37; 11Y40;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a totally real number field and p a prime. We show that the “complexity” of Greenberg’s conjecture (λ=μ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = \mu = 0$$\end{document}) is governed (under Leopoldt’s conjecture) by the finite torsion group Tk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {T}}}_k$$\end{document} of the Galois group of the maximal abelian p-ramified pro-p-extension of k, by means of images, in Tk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {T}}}_k$$\end{document}, of ideal norms from the layers kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document} of the cyclotomic tower (Theorem 4.2). These images are obtained via the algorithm computing, by “unscrewing”, the p-class group of kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document}. Conjecture 4.3 of equidistribution of these images would show that the number of steps bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_n$$\end{document} of the algorithms is bounded as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document}, so that (Theorem 3.3) Greenberg’s conjecture, hopeless within the sole framework of Iwasawa’s theory, would hold true “with probability 1”.
引用
收藏
页码:277 / 289
页数:12
相关论文
共 50 条