Algorithmic complexity of Greenberg’s conjecture

被引:0
|
作者
Georges Gras
机构
[1] In retirement from Franche-Comté University,
来源
Archiv der Mathematik | 2021年 / 117卷
关键词
Greenberg’s conjecture; -Class groups; Class field theory; -adic regulators; -ramification theory; Iwasawa’s theory; 11R23; 11R29; 11R37; 11Y40;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a totally real number field and p a prime. We show that the “complexity” of Greenberg’s conjecture (λ=μ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = \mu = 0$$\end{document}) is governed (under Leopoldt’s conjecture) by the finite torsion group Tk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {T}}}_k$$\end{document} of the Galois group of the maximal abelian p-ramified pro-p-extension of k, by means of images, in Tk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {T}}}_k$$\end{document}, of ideal norms from the layers kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document} of the cyclotomic tower (Theorem 4.2). These images are obtained via the algorithm computing, by “unscrewing”, the p-class group of kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document}. Conjecture 4.3 of equidistribution of these images would show that the number of steps bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_n$$\end{document} of the algorithms is bounded as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document}, so that (Theorem 3.3) Greenberg’s conjecture, hopeless within the sole framework of Iwasawa’s theory, would hold true “with probability 1”.
引用
下载
收藏
页码:277 / 289
页数:12
相关论文
共 50 条
  • [31] Ideal standards in the cyclotomic tower and Greenberg conjecture
    Gras, Georges
    ANNALES MATHEMATIQUES DU QUEBEC, 2019, 43 (02): : 249 - 280
  • [32] Haemers' Conjecture: An Algorithmic Perspective
    Wang, Wei
    Wang, Wei
    EXPERIMENTAL MATHEMATICS, 2024,
  • [33] GREENBERG?S CONJECTURE FOR REAL QUADRATIC FIELDS AND THE CYCLOTOMIC Z2-EXTENSIONS
    Pagani, Lorenzo
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1437 - 1467
  • [34] Algorithmic complexity and randomness
    Partovi, AH
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 31 - 37
  • [35] Algorithmic complexity of a protein
    Dewey, TG
    PHYSICAL REVIEW E, 1996, 54 (01): : R39 - R41
  • [36] The Algorithmic Complexity of Landscapes
    Papadimitriou, Fivos
    LANDSCAPE RESEARCH, 2012, 37 (05) : 591 - 611
  • [37] Algorithmic complexity and applications
    Calude, Cristian S.
    Jurgensen, Helmut
    FUNDAMENTA INFORMATICAE, 2008, 83 (1-2) : VII - VIII
  • [38] Algorithmic Folding Complexity
    Jean Cardinal
    Erik D. Demaine
    Martin L. Demaine
    Shinji Imahori
    Tsuyoshi Ito
    Masashi Kiyomi
    Stefan Langerman
    Ryuhei Uehara
    Takeaki Uno
    Graphs and Combinatorics, 2011, 27 : 341 - 351
  • [39] Nivat's conjecture and pattern complexity in algebraic subshifts
    Kari, Jarkko
    Moutot, Etienne
    THEORETICAL COMPUTER SCIENCE, 2019, 777 : 379 - 386
  • [40] On the algorithmic complexity of crystals
    Krivovichev, S. V.
    MINERALOGICAL MAGAZINE, 2014, 78 (02) : 415 - 435