共 50 条
Algorithmic complexity of Greenberg’s conjecture
被引:0
|作者:
Georges Gras
机构:
[1] In retirement from Franche-Comté University,
来源:
关键词:
Greenberg’s conjecture;
-Class groups;
Class field theory;
-adic regulators;
-ramification theory;
Iwasawa’s theory;
11R23;
11R29;
11R37;
11Y40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let k be a totally real number field and p a prime. We show that the “complexity” of Greenberg’s conjecture (λ=μ=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda = \mu = 0$$\end{document}) is governed (under Leopoldt’s conjecture) by the finite torsion group Tk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {T}}}_k$$\end{document} of the Galois group of the maximal abelian p-ramified pro-p-extension of k, by means of images, in Tk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {T}}}_k$$\end{document}, of ideal norms from the layers kn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_n$$\end{document} of the cyclotomic tower (Theorem 4.2). These images are obtained via the algorithm computing, by “unscrewing”, the p-class group of kn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_n$$\end{document}. Conjecture 4.3 of equidistribution of these images would show that the number of steps bn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b_n$$\end{document} of the algorithms is bounded as n→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \rightarrow \infty $$\end{document}, so that (Theorem 3.3) Greenberg’s conjecture, hopeless within the sole framework of Iwasawa’s theory, would hold true “with probability 1”.
引用
下载
收藏
页码:277 / 289
页数:12
相关论文