Scalar clouds in charged stringy black hole-mirror system

被引:0
|
作者
Ran Li
Junkun Zhao
Xinghua Wu
Yanming Zhang
机构
[1] Henan Normal University,Department of Physics
来源
关键词
Black Hole; Scalar Field; Kerr Black Hole; Black Hole Charge; Black Hole Background;
D O I
暂无
中图分类号
学科分类号
摘要
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency ω=mΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =m\Omega _\mathrm{H}$$\end{document}, where m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is the azimuthal index and ΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\mathrm{H}$$\end{document} is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition ω=qΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =q\Phi _\mathrm{H}$$\end{document} for a charged scalar field, where q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} is the charge of the scalar field, and ΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _\mathrm{H}$$\end{document} is the horizon’s electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document}. It is shown that analytical results of the mirror location rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the clouds perfectly coincide with numerical results in the qQ≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\ll 1$$\end{document} regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the scalar clouds in the qQ≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\gg 1$$\end{document} regime.
引用
收藏
相关论文
共 50 条
  • [41] Nonextremal stringy black hole
    Suzuki, K
    PHYSICAL REVIEW D, 1997, 56 (12): : 7846 - 7853
  • [42] Geodesic motion in a charged 2D stringy black hole spacetime
    Uniyal, Rashmi
    Nandan, Hemwati
    Purohit, K. D.
    MODERN PHYSICS LETTERS A, 2014, 29 (29)
  • [43] Energy contents of stringy charged black hole in general relativity and teleparallel gravity
    Mourad, M. F.
    Abdelgaber, M.
    MODERN PHYSICS LETTERS A, 2022, 37 (12)
  • [44] Black hole accretion of scalar clouds with spontaneous symmetry breaking
    Garcia-Saenz, Sebastian
    Guo, Guangzhou
    Wang, Peng
    Wang, Xinmiao
    PHYSICAL REVIEW D, 2024, 110 (12)
  • [45] SCALAR FIELDS AROUND A CHARGED, ROTATING BLACK-HOLE
    BICAK, J
    STUCHLIK, Z
    SOB, M
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1978, 28 (02) : 121 - 124
  • [46] Inelastic black hole scattering from charged scalar amplitudes
    Luna, Andres
    Nicholson, Isobel
    O'Connell, Donal
    White, Chris D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [47] Charged scalar perturbations around a regular magnetic black hole
    Huang, Yang
    Liu, Dao-Jun
    PHYSICAL REVIEW D, 2016, 93 (10)
  • [48] Inelastic black hole scattering from charged scalar amplitudes
    Andrés Luna
    Isobel Nicholson
    Donal O’Connell
    Chris D. White
    Journal of High Energy Physics, 2018
  • [49] ABSORPTION OF MASSIVE SCALAR FIELD BY A CHARGED BLACK-HOLE
    NAKAMURA, T
    SATO, H
    PHYSICS LETTERS B, 1976, 61 (04) : 371 - 374
  • [50] Scalar field conformally coupled to a charged BTZ black hole
    Valtancoli, P.
    ANNALS OF PHYSICS, 2016, 369 : 161 - 167