Scalar clouds in charged stringy black hole-mirror system

被引:0
|
作者
Ran Li
Junkun Zhao
Xinghua Wu
Yanming Zhang
机构
[1] Henan Normal University,Department of Physics
来源
关键词
Black Hole; Scalar Field; Kerr Black Hole; Black Hole Charge; Black Hole Background;
D O I
暂无
中图分类号
学科分类号
摘要
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency ω=mΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =m\Omega _\mathrm{H}$$\end{document}, where m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is the azimuthal index and ΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\mathrm{H}$$\end{document} is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition ω=qΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =q\Phi _\mathrm{H}$$\end{document} for a charged scalar field, where q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} is the charge of the scalar field, and ΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _\mathrm{H}$$\end{document} is the horizon’s electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document}. It is shown that analytical results of the mirror location rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the clouds perfectly coincide with numerical results in the qQ≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\ll 1$$\end{document} regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the scalar clouds in the qQ≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\gg 1$$\end{document} regime.
引用
收藏
相关论文
共 50 条
  • [1] Scalar clouds in charged stringy black hole-mirror system
    Li, Ran
    Zhao, Junkun
    Wu, Xinghua
    Zhang, Yanming
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (04):
  • [2] Numerical study of superradiant instability for charged stringy black hole-mirror system
    Li, Ran
    Zhao, Junkun
    PHYSICS LETTERS B, 2015, 740 : 317 - 321
  • [3] Time domain analysis of superradiant instability for the charged stringy black hole-mirror system
    Li, Ran
    Tian, Yu
    Zhang, Hongbao
    Zhao, Junkun
    PHYSICS LETTERS B, 2015, 750 : 520 - 527
  • [4] Superradiant instability of charged scalar field in stringy black hole mirror system
    Li, Ran
    Zhao, Junkun
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (09):
  • [5] Superradiant instability of charged scalar field in stringy black hole mirror system
    Ran Li
    Junkun Zhao
    The European Physical Journal C, 2014, 74
  • [6] Tolman Energy of a Stringy Charged Black Hole
    S. S. Xulu
    International Journal of Theoretical Physics, 1998, 37 : 1773 - 1777
  • [7] Energy distribution of a stringy charged black hole
    Ragab M. Gad
    Astrophysics and Space Science, 2005, 295 : 459 - 462
  • [8] Tolman energy of a stringy charged black hole
    Xulu, SS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (06) : 1773 - 1777
  • [9] Energy distribution of a stringy charged black hole
    Gad, RM
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 295 (04) : 459 - 462
  • [10] Phantom Energy Accretion by a Stringy Charged Black Hole
    Sharif, M.
    Abbas, G.
    CHINESE PHYSICS LETTERS, 2012, 29 (01)