Scalar clouds in charged stringy black hole-mirror system

被引:0
|
作者
Ran Li
Junkun Zhao
Xinghua Wu
Yanming Zhang
机构
[1] Henan Normal University,Department of Physics
来源
关键词
Black Hole; Scalar Field; Kerr Black Hole; Black Hole Charge; Black Hole Background;
D O I
暂无
中图分类号
学科分类号
摘要
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency ω=mΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =m\Omega _\mathrm{H}$$\end{document}, where m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is the azimuthal index and ΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\mathrm{H}$$\end{document} is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition ω=qΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =q\Phi _\mathrm{H}$$\end{document} for a charged scalar field, where q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} is the charge of the scalar field, and ΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _\mathrm{H}$$\end{document} is the horizon’s electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document}. It is shown that analytical results of the mirror location rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the clouds perfectly coincide with numerical results in the qQ≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\ll 1$$\end{document} regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the scalar clouds in the qQ≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\gg 1$$\end{document} regime.
引用
收藏
相关论文
共 50 条
  • [31] Absorption and scattering of charged scalar waves by charged Horndeski black hole
    Li, Qian
    Wang, Qianchuan
    Jia, Junji
    PHYSICAL REVIEW D, 2025, 111 (02)
  • [32] Massless scalar scattering by a charged regular black hole
    de Paula, Marco Aurelio Abreu
    Leite, Luiz Carlos dos Santos
    Crispino, Luis Carlos Bassalo
    ASTRONOMISCHE NACHRICHTEN, 2023, 344 (1-2)
  • [33] No scalar hair theorem for a charged spherical black hole
    Banerjee, N
    Sen, S
    PHYSICAL REVIEW D, 1998, 58 (10)
  • [34] Absorption of a massive scalar field by a charged black hole
    Benone, Carolina L.
    de Oliveira, Ednilton S.
    Dolan, Sam R.
    Crispino, Luis C. B.
    PHYSICAL REVIEW D, 2014, 89 (10)
  • [35] Quasinormal Modes of a Charged Black Hole with Scalar Hair
    Guo, Wen-Di
    Tan, Qin
    UNIVERSE, 2023, 9 (07)
  • [36] Stringy black hole interiors
    Amit Giveon
    Nissan Itzhaki
    Journal of High Energy Physics, 2019
  • [37] Nonextremal stringy black hole
    Phys Rev D, 12 (7846):
  • [38] Spectroscopy of Stringy Black Hole
    Sakalli, Izzet
    Tokgoz, Gulnihal
    10TH JUBILEE CONFERENCE OF THE BALKAN PHYSICAL UNION, 2019, 2075
  • [39] Spatially regular charged black holes supporting charged massive scalar clouds
    Hod, Shahar
    PHYSICAL REVIEW D, 2024, 109 (06)
  • [40] Deflection of light and shadow cast by a dual-charged stringy black hole
    Kala, Shubham
    Saurabh
    Nandan, Hemwati
    Sharma, Prateek
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (28):