Tightening methods based on nontrivial bounds on bilinear terms

被引:0
|
作者
Yifu Chen
Christos T. Maravelias
机构
[1] University of Wisconsin-Madison,Department of Chemical and Biological Engineering
[2] The Environment Princeton University,Department of Chemical & Biological Engineering and Andlinger Center for Energy
来源
关键词
Preprocessing; Nonlinear optimization; Nonconvex optimization; Semi-continuous variables; Valid constraints;
D O I
暂无
中图分类号
学科分类号
摘要
We develop tightening and solution methods for optimization problems containing bilinear terms. We focus on the bilinear term w=xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=xy$$\end{document} with nonnegative variables x∈xL,xU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \left[{x}^{\mathrm{L}},{x}^{\mathrm{U}}\right]$$\end{document} and y∈[yL,yU]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y\in [{y}^{\mathrm{L}},{y}^{\mathrm{U}}]$$\end{document}, where w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document} is semi-continuous and upper and lower bounded by wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} when positive. wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} are said to be nontrivial upper and lower bounds if wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} is smaller than xUyU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{U}}{y}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} is greater than xLyL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{L}}{y}^{\mathrm{L}}$$\end{document}, respectively. We derive a family of valid linear constraints and show that, when one of the nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that represents the bilinear term. We propose different preprocessing methods for generating strong constraints from the family. Computational results demonstrate the effectiveness of the proposed methods in terms of reducing optimality gap and computational time.
引用
收藏
页码:1217 / 1254
页数:37
相关论文
共 50 条