Tightening methods based on nontrivial bounds on bilinear terms

被引:0
|
作者
Yifu Chen
Christos T. Maravelias
机构
[1] University of Wisconsin-Madison,Department of Chemical and Biological Engineering
[2] The Environment Princeton University,Department of Chemical & Biological Engineering and Andlinger Center for Energy
来源
关键词
Preprocessing; Nonlinear optimization; Nonconvex optimization; Semi-continuous variables; Valid constraints;
D O I
暂无
中图分类号
学科分类号
摘要
We develop tightening and solution methods for optimization problems containing bilinear terms. We focus on the bilinear term w=xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=xy$$\end{document} with nonnegative variables x∈xL,xU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \left[{x}^{\mathrm{L}},{x}^{\mathrm{U}}\right]$$\end{document} and y∈[yL,yU]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y\in [{y}^{\mathrm{L}},{y}^{\mathrm{U}}]$$\end{document}, where w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document} is semi-continuous and upper and lower bounded by wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} when positive. wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} are said to be nontrivial upper and lower bounds if wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} is smaller than xUyU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{U}}{y}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} is greater than xLyL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{L}}{y}^{\mathrm{L}}$$\end{document}, respectively. We derive a family of valid linear constraints and show that, when one of the nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that represents the bilinear term. We propose different preprocessing methods for generating strong constraints from the family. Computational results demonstrate the effectiveness of the proposed methods in terms of reducing optimality gap and computational time.
引用
收藏
页码:1217 / 1254
页数:37
相关论文
共 50 条
  • [21] Closure to Discussion on "Interval Power Flow Analysis Using Linear Relaxation and Optimality-Based Bounds Tightening (OBBT) Methods"
    Ding, Tao
    Bo, Rui
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (04) : 2203 - 2203
  • [22] Bounds tightening based on optimality conditions for nonconvex box-constrained optimization
    Puranik, Yash
    Sahinidis, Nikolaos V.
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 67 (1-2) : 59 - 77
  • [23] Tightening Upper Bounds for Approximate State Conversion
    Zuo, Hai-Xin
    Liu, Feng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (07)
  • [24] Chaining Mutual Information and Tightening Generalization Bounds
    Asadi, Amir R.
    Abbe, Emmanuel
    Verdu, Sergio
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [25] Bounds tightening based on optimality conditions for nonconvex box-constrained optimization
    Yash Puranik
    Nikolaos V. Sahinidis
    Journal of Global Optimization, 2017, 67 : 59 - 77
  • [26] Efficient bounds tightening based on SOCP relaxations for AC optimal power flow
    Shao, Yuanxun
    Robertson, Dillard
    Bynum, Michael
    Laird, Carl D.
    Castillo, Anya
    Scott, Joseph K.
    OPTIMIZATION AND ENGINEERING, 2025, 26 (01) : 83 - 119
  • [27] TIGHTENING METHODS FOR FASTENERS
    BOYS, JT
    TAMBINI, A
    ENGINEERING, 1981, 221 (05): : R1 - R4
  • [28] On efficiency of tightening bounds in interval global optimization
    Zilinskas, Antanas
    Zilinskas, Julius
    APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 197 - 205
  • [29] Tightening Bounds for Bayesian Network Structure Learning
    Fan, Xiannian
    Yuan, Changhe
    Malone, Brandon
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2439 - 2445
  • [30] Tightening robust price bounds for exotic derivatives
    Luetkebohmert, Eva
    Sester, Julian
    QUANTITATIVE FINANCE, 2019, 19 (11) : 1797 - 1815