Tightening methods based on nontrivial bounds on bilinear terms

被引:0
|
作者
Yifu Chen
Christos T. Maravelias
机构
[1] University of Wisconsin-Madison,Department of Chemical and Biological Engineering
[2] The Environment Princeton University,Department of Chemical & Biological Engineering and Andlinger Center for Energy
来源
关键词
Preprocessing; Nonlinear optimization; Nonconvex optimization; Semi-continuous variables; Valid constraints;
D O I
暂无
中图分类号
学科分类号
摘要
We develop tightening and solution methods for optimization problems containing bilinear terms. We focus on the bilinear term w=xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=xy$$\end{document} with nonnegative variables x∈xL,xU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \left[{x}^{\mathrm{L}},{x}^{\mathrm{U}}\right]$$\end{document} and y∈[yL,yU]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y\in [{y}^{\mathrm{L}},{y}^{\mathrm{U}}]$$\end{document}, where w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document} is semi-continuous and upper and lower bounded by wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} when positive. wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} are said to be nontrivial upper and lower bounds if wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} is smaller than xUyU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{U}}{y}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} is greater than xLyL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{L}}{y}^{\mathrm{L}}$$\end{document}, respectively. We derive a family of valid linear constraints and show that, when one of the nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that represents the bilinear term. We propose different preprocessing methods for generating strong constraints from the family. Computational results demonstrate the effectiveness of the proposed methods in terms of reducing optimality gap and computational time.
引用
收藏
页码:1217 / 1254
页数:37
相关论文
共 50 条
  • [31] Tightening Upper Bounds for Approximate State Conversion
    Hai-Xin Zuo
    Feng Liu
    International Journal of Theoretical Physics, 61
  • [32] On Tightening the M-Best MAP Bounds
    Cheng, Qiang
    Chen, Li
    Xing, Yuanjian
    Yang, Yuhao
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 625 - 637
  • [33] Comment on "Nontrivial geometries: Bounds on the curvature of the universe"
    Raesaenen, Syksy
    ASTROPARTICLE PHYSICS, 2008, 30 (04) : 216 - 217
  • [34] ENDPOINT BOUNDS FOR THE BILINEAR HILBERT TRANSFORM
    Di Plinio, Francesco
    Thiele, Christoph
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (06) : 3931 - 3972
  • [35] Identifiability Bounds for Bilinear Inverse Problems
    Choudhary, Sunav
    Mitra, Urbashi
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 1677 - 1681
  • [36] Bounds on bilinear forms with Kloosterman sums
    Kerr, Bryce
    Shparlinski, Igor E.
    Wu, Xiaosheng
    Xi, Ping
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, : 578 - 621
  • [37] Bounds on bilinear sums of Kloosterman sums
    Bag, Nilanjan
    Shparlinski, Igor E.
    JOURNAL OF NUMBER THEORY, 2023, 242 : 102 - 111
  • [38] THEORY OF SCATTERING IN TERMS OF BILINEAR FUNCTIONALS
    KOSHMANENKO, VD
    DOKLADY AKADEMII NAUK SSSR, 1975, 224 (02): : 277 - 280
  • [39] Tightening bounds for variational inference by revisiting perturbation theory
    Bamler, Robert
    Zhang, Cheng
    Opper, Manfred
    Mandt, Stephan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (12):
  • [40] TIGHTENING CAV (DUS) BOUNDS BY USING A PARAMETRIC MODEL
    TAMURA, H
    FROST, PA
    JOURNAL OF ACCOUNTING RESEARCH, 1986, 24 (02) : 364 - 371