Tightening methods based on nontrivial bounds on bilinear terms

被引:0
|
作者
Yifu Chen
Christos T. Maravelias
机构
[1] University of Wisconsin-Madison,Department of Chemical and Biological Engineering
[2] The Environment Princeton University,Department of Chemical & Biological Engineering and Andlinger Center for Energy
来源
关键词
Preprocessing; Nonlinear optimization; Nonconvex optimization; Semi-continuous variables; Valid constraints;
D O I
暂无
中图分类号
学科分类号
摘要
We develop tightening and solution methods for optimization problems containing bilinear terms. We focus on the bilinear term w=xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=xy$$\end{document} with nonnegative variables x∈xL,xU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \left[{x}^{\mathrm{L}},{x}^{\mathrm{U}}\right]$$\end{document} and y∈[yL,yU]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y\in [{y}^{\mathrm{L}},{y}^{\mathrm{U}}]$$\end{document}, where w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document} is semi-continuous and upper and lower bounded by wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} when positive. wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} are said to be nontrivial upper and lower bounds if wU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{U}}$$\end{document} is smaller than xUyU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{U}}{y}^{\mathrm{U}}$$\end{document} and wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}^{\mathrm{L}}$$\end{document} is greater than xLyL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x}^{\mathrm{L}}{y}^{\mathrm{L}}$$\end{document}, respectively. We derive a family of valid linear constraints and show that, when one of the nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that represents the bilinear term. We propose different preprocessing methods for generating strong constraints from the family. Computational results demonstrate the effectiveness of the proposed methods in terms of reducing optimality gap and computational time.
引用
收藏
页码:1217 / 1254
页数:37
相关论文
共 50 条
  • [1] Tightening methods based on nontrivial bounds on bilinear terms
    Chen, Yifu
    Maravelias, Christos T.
    OPTIMIZATION AND ENGINEERING, 2022, 23 (03) : 1217 - 1254
  • [2] Correction to: Tightening methods based on nontrivial bounds on bilinear terms
    Yifu Chen
    Christos T. Maravelias
    Optimization and Engineering, 2023, 24 : 709 - 709
  • [3] Tightening methods based on nontrivial bounds on bilinear terms (Nov, 10.1007/s11081-021-09646-8, 2021)
    Chen, Yifu
    Maravelias, Christos T.
    OPTIMIZATION AND ENGINEERING, 2023, 24 (01) : 709 - 709
  • [4] Tightening discretization-based MILP models for the pooling problem using upper bounds on bilinear terms
    Yifu Chen
    Christos T. Maravelias
    Xiaomin Zhang
    Optimization Letters, 2024, 18 : 215 - 234
  • [5] Tightening discretization-based MILP models for the pooling problem using upper bounds on bilinear terms
    Chen, Yifu
    Maravelias, Christos T.
    Zhang, Xiaomin
    OPTIMIZATION LETTERS, 2024, 18 (01) : 215 - 234
  • [6] Tightening Mutual Information Based Bounds on Generalization Error
    Bu, Yuheng
    Zou, Shaofeng
    Veeravalli, Venugopal V.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 587 - 591
  • [7] THE LOWER BOUNDS ON THE ADDITIVE COMPLEXITY OF BILINEAR PROBLEMS IN TERMS OF SOME ALGEBRAIC QUANTITIES
    PAN, VY
    INFORMATION PROCESSING LETTERS, 1981, 13 (02) : 71 - 72
  • [8] Tightening bounds in triangular systems
    Kedagni, Desire
    Mourifie, Ismael
    ECONOMICS LETTERS, 2014, 125 (03) : 455 - 458
  • [9] Tightening the Bounds on Feasible Preemptions
    Ramaprasad, Harini
    Mueller, Frank
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2010, 10 (02)
  • [10] Feasibility-Based Bounds Tightening via Fixed Points
    Belotti, Pietro
    Cafieri, Sonia
    Lee, Jon
    Liberti, Leo
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT 1, 2010, 6508 : 65 - +