viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia

被引:0
|
作者
El-ad David Amir
Kara L Davis
Michelle D Tadmor
Erin F Simonds
Jacob H Levine
Sean C Bendall
Daniel K Shenfeld
Smita Krishnaswamy
Garry P Nolan
Dana Pe'er
机构
[1] Columbia Initiative for Systems Biology,Department of Biological Sciences
[2] Columbia University,Department of Microbiology and Immunology
[3] Baxter Laboratory in Stem Cell Biology,undefined
[4] Stanford University,undefined
来源
Nature Biotechnology | 2013年 / 31卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new tool to visualize high-dimensional single-cell data, when integrated with mass cytometry, reveals phenotypic heterogeneity of human leukemia.
引用
收藏
页码:545 / 552
页数:7
相关论文
共 50 条
  • [31] Single-Cell Mass Cytometry Characterizes Phenotypic and Functional Heterogeneity in Acute Myeloid Leukemia at Diagnosis, in Remission and Relapse
    Han, Lina
    Qiu, Peng
    Jorgensen, Jeffrey L.
    Mak, Duncan
    Burks, Jared K.
    McQueen, Teresa
    Zeng, Zhihong
    Ravandi, Farhad
    Roboz, Gail J.
    Kantarjian, Hagop M.
    Kornblau, Steven M.
    Andreeff, Michael
    Guzman, Monica L.
    Konopleva, Marina Y.
    BLOOD, 2018, 132
  • [32] Phenotypic heterogeneity in pancreatic ductal adenocarcinoma revealed by single-cell lipidomics
    Trajkovic-Arsic, Marija
    Delafiori, Jeany
    Shahraz, Mohammed
    Munch, Corinna
    Lueong, Smiths S.
    Liffers, Sven T.
    Hellerschmied, Doris
    Alexandrov, Theodore
    Siveke, Jens T.
    CANCER RESEARCH, 2024, 84 (06)
  • [33] Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity
    Rego, E. Hesper
    Audette, Rebecca E.
    Rubin, Eric J.
    NATURE, 2017, 546 (7656) : 153 - +
  • [34] Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity
    E. Hesper Rego
    Rebecca E. Audette
    Eric J. Rubin
    Nature, 2017, 546 : 153 - 157
  • [35] TRIMODAL SINGLE-CELL PROFILING REVEALS EPIGENETIC INTRATUMOR HETEROGENEITY IN T CELL ACUTE LYMPHOBLASTIC LEUKEMIA (T -ALL)
    Brand, Marjorie
    EXPERIMENTAL HEMATOLOGY, 2024, 137
  • [36] Single-cell DNA amplicon sequencing reveals clonal heterogeneity and evolution in T-cell acute lymphoblastic leukemia
    Alberti-Servera, Llucia
    Demeyer, Sofie
    Govaerts, Inge
    Swings, Toon
    De Bie, Jolien
    Gielen, Olga
    Brociner, Marco
    Michaux, Lucienne
    Maertens, Johan
    Uyttebroeck, Anne
    De Keersmaecker, Kim
    Boeckx, Nancy
    Segers, Heidi
    Cools, Jan
    BLOOD, 2021, 137 (06) : 801 - 811
  • [37] Comparison of visualization tools for single-cell RNAseq data
    Cakir, Batuhan
    Prete, Martin
    Huang, Ni
    van Dongen, Stijn
    Pir, Pinar
    Kiselev, Vladimir Yu
    NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (03)
  • [38] Unbiased visualization of single-cell genomic data with SCUBI
    Hou, Wenpin
    Ji, Zhicheng
    CELL REPORTS METHODS, 2022, 2 (01):
  • [39] Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations
    Maria Mircea
    Mazène Hochane
    Xueying Fan
    Susana M. Chuva de Sousa Lopes
    Diego Garlaschelli
    Stefan Semrau
    Genome Biology, 23
  • [40] Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations
    Mircea, Maria
    Hochane, Mazene
    Fan, Xueying
    Lopes, Susana M. Chuva de Sousa
    Garlaschelli, Diego
    Semrau, Stefan
    GENOME BIOLOGY, 2022, 23 (01)