viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia

被引:0
|
作者
El-ad David Amir
Kara L Davis
Michelle D Tadmor
Erin F Simonds
Jacob H Levine
Sean C Bendall
Daniel K Shenfeld
Smita Krishnaswamy
Garry P Nolan
Dana Pe'er
机构
[1] Columbia Initiative for Systems Biology,Department of Biological Sciences
[2] Columbia University,Department of Microbiology and Immunology
[3] Baxter Laboratory in Stem Cell Biology,undefined
[4] Stanford University,undefined
来源
Nature Biotechnology | 2013年 / 31卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new tool to visualize high-dimensional single-cell data, when integrated with mass cytometry, reveals phenotypic heterogeneity of human leukemia.
引用
收藏
页码:545 / 552
页数:7
相关论文
共 50 条
  • [21] Single-cell epigenomic variability reveals functional cancer heterogeneity
    Ulrike M. Litzenburger
    Jason D. Buenrostro
    Beijing Wu
    Ying Shen
    Nathan C. Sheffield
    Arwa Kathiria
    William J. Greenleaf
    Howard Y. Chang
    Genome Biology, 18
  • [22] Single-cell multimodal profiling reveals cellular epigenetic heterogeneity
    Lih Feng Cheow
    Elise T Courtois
    Yuliana Tan
    Ramya Viswanathan
    Qiaorui Xing
    Rui Zhen Tan
    Daniel S W Tan
    Paul Robson
    Yuin-Han Loh
    Stephen R Quake
    William F Burkholder
    Nature Methods, 2016, 13 : 833 - 836
  • [23] Single-Cell Transcriptomics Reveals the Cellular Heterogeneity of Cardiovascular Diseases
    Fu, Mengxia
    Song, Jiangping
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [24] Single-cell multimodal profiling reveals cellular epigenetic heterogeneity
    Cheow, Lih Feng
    Courtois, Elise T.
    Tan, Yuliana
    Viswanathan, Ramya
    Xing, Qiaorui
    Tan, Rui Zhen
    Tan, Daniel S. W.
    Robson, Paul
    Loh, Yuin-Han
    Quake, Stephen R.
    Burkholder, William F.
    NATURE METHODS, 2016, 13 (10) : 833 - +
  • [25] Single-cell epigenomic variability reveals functional cancer heterogeneity
    Litzenburger, Ulrike M.
    Buenrostro, Jason D.
    Wu, Beijing
    Shen, Ying
    Sheffield, Nathan C.
    Kathiria, Arwa
    Greenleaf, William J.
    Chang, Howard Y.
    GENOME BIOLOGY, 2017, 18
  • [26] Single-cell transcriptomics reveals heterogeneity and prognostic markers of myeloid precursor cells in acute myeloid leukemia
    He, Guangfeng
    Jiang, Lai
    Zhou, Xuancheng
    Gu, Yuheng
    Tang, Jingyi
    Zhang, Qiang
    Hu, Qingwen
    Huang, Gang
    Zhuang, Ziye
    Gao, Xinrui
    Xu, Ke
    Xiao, Yewei
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [27] Single-cell transcriptional profiling reveals the heterogeneity in embryonal rhabdomyosarcoma
    Hong, Bo
    Xia, Tian
    Ye, Chun-Jing
    Zhan, Yong
    Yang, Ran
    Liu, Jia
    Li, Yi
    Chen, Zhi-Xue
    Yao, Wei
    Li, Kai
    Wang, Jia
    Dong, Kui-Ran
    Dong, Rui
    MEDICINE, 2021, 100 (31)
  • [28] High-dimensional single-cell analysis reveals the immune signature of narcolepsy
    Hartmann, Felix J.
    Bernard-Valnet, Raphael
    Queriault, Clemence
    Mrdjen, Dunja
    Weber, Lukas M.
    Galli, Edoardo
    Krieg, Carsten
    Robinson, Mark D.
    Xuan-Hung Nguyen
    Dauvilliers, Yves
    Liblau, Roland S.
    Becher, Burkhard
    JOURNAL OF EXPERIMENTAL MEDICINE, 2016, 213 (12): : 2621 - 2633
  • [29] Massively parallel quantification of phenotypic heterogeneity in single-cell drug responses
    Yellen, Benjamin B.
    Zawistowski, Jon S.
    Czech, Eric A.
    Sanford, Caleb, I
    SoRelle, Elliott D.
    Luftig, Micah A.
    Forbes, Zachary G.
    Wood, Kris C.
    Hammerbacher, Jeff
    SCIENCE ADVANCES, 2021, 7 (38)
  • [30] Bacterial phenotypic heterogeneity through the lens of single-cell RNA sequencing
    Walls, Alex W.
    Rosenthal, Adam Z.
    TRANSCRIPTION-AUSTIN, 2024, 15 (1-2): : 48 - 62