Comparison of visualization tools for single-cell RNAseq data

被引:27
|
作者
Cakir, Batuhan [1 ,2 ]
Prete, Martin [1 ]
Huang, Ni [1 ]
van Dongen, Stijn [1 ]
Pir, Pinar [2 ]
Kiselev, Vladimir Yu [1 ]
机构
[1] Wellcome Sanger Inst, Hinxton CB10 1SA, England
[2] Gebze Tech Univ, Dept Bioengn, TR-41400 Kocaeli, Turkey
基金
英国惠康基金;
关键词
SEQ; EXPRESSION;
D O I
10.1093/nargab/lqaa052
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In the last decade, single cell RNAseq (scRNAseq) datasets have grown in size from a single cell to millions of cells. Due to its high dimensionality, it is not always feasible to visualize scRNAseq data and share it in a scientific report or an article publication format. Recently, many interactive analysis and visualization tools have been developed to address this issue and facilitate knowledge transfer in the scientific community. In this study, we review several of the currently available scRNAseq visualization tools and benchmark the subset that allows to visualize the data on the web and share it with others. We consider the memory and time required to prepare datasets for sharing as the number of cells increases, and additionally review the user experience and features available in the web interface. To address the problem of format compatibility we have also developed a user-friendly R package, sceasy, which allows users to convert their own scRNAseq datasets into a specific data format for visualization.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Computational Tools and Resources for Analysis and Exploration of Single-Cell Rnaseq Data in Agriculture
    Kapoor, Muskan
    Tuggle, Christopher K.
    Burdett, Tony
    Tickle, Timothy
    Harrison, Peter
    Elsik, Christine
    Provart, Nicholas
    Libault, Marc
    Warren, Wes
    Koltes, James E.
    Sokolov, Alexey
    Ventura, Enrique Sapena
    Yordanova, Galabina
    Papatheodorou, Irene
    George, Nancy
    Ware, Doreen
    Kumari, Sunita
    Daharsh, Lance
    Cole, Benjamin
    [J]. JOURNAL OF ANIMAL SCIENCE, 2023, 101
  • [2] Computational Tools and Resources for Analysis and Exploration of Single-Cell Rnaseq Data in Agriculture
    Kapoor, Muskan
    Tuggle, Christopher K.
    Burdett, Tony
    Tickle, Timothy
    Harrison, Peter
    Elsik, Christine
    Provart, Nicholas
    Libault, Marc
    Warren, Wes
    Koltes, James E.
    Sokolov, Alexey
    Ventura, Enrique Sapena
    Yordanova, Galabina
    Papatheodorou, Irene
    George, Nancy
    Ware, Doreen
    Kumari, Sunita
    Daharsh, Lance
    Cole, Benjamin
    [J]. JOURNAL OF ANIMAL SCIENCE, 2023, 101 : 267 - 268
  • [3] Comparison of Live Cell Enrichment Methods for Single-Cell Rnaseq
    Urben, Brigita Meskauskaite
    Krause, Tobias
    Takizawa, Meril
    Snopkowski, Catherine
    Masilionis, Ignas
    Remsik, Jan
    Parisotto, Yollanda
    Brown, Chrysothemis
    Boire, Adrienne
    Pe'er, Dana
    Sharma, Roshan
    Chaligne, Ronan
    [J]. BLOOD, 2023, 142
  • [4] Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data
    Balomenos, Athanasios D.
    Stefanou, Victoria
    Manolakos, Elias S.
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [5] Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data
    Athanasios D. Balomenos
    Victoria Stefanou
    Elias S. Manolakos
    [J]. BMC Bioinformatics, 22
  • [6] Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila
    Mohr, Stephanie E.
    Tattikota, Sudhir Gopal
    Xu, Jun
    Zirin, Jonathan
    Hu, Yanhui
    Perrimon, Norbert
    [J]. GENETICS, 2021, 217 (04)
  • [7] Mosaic autosomal aneuploidies are detectable from single-cell RNAseq data
    Griffiths, Jonathan A.
    Scialdone, Antonio
    Marioni, John C.
    [J]. BMC GENOMICS, 2017, 18
  • [8] Mosaic autosomal aneuploidies are detectable from single-cell RNAseq data
    Jonathan A. Griffiths
    Antonio Scialdone
    John C. Marioni
    [J]. BMC Genomics, 18
  • [9] Investigating Sources of Zeros in 10x Single-Cell RNAseq Data
    Slowik, Hanna
    Zyla, Joanna
    Marczyk, Michal
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, : 71 - 80
  • [10] TIPS: trajectory inference of pathway significance through pseudotime comparison for functional assessment of single-cell RNAseq data
    Zheng, Zihan
    Xin, Qiu
    Wu, Haiyang
    Chang, Ling
    Tang, Xiangyu
    Zou, Liyun
    Li, Jingyi
    Wu, Yuzhang
    Zhou, Jianzhi
    Shan, Jiang
    Wan, Ying
    Ni, Qingshan
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)