Would the field of cognitive neuroscience be advanced by sharing functional MRI data?

被引:0
|
作者
Kristina M Visscher
Daniel H Weissman
机构
[1] University of Alabama,Department of Neurobiology
[2] University of Michigan,Department of Psychology
来源
BMC Medicine | / 9卷
关键词
Functional Connectivity; Data Sharing; Cognitive Neuroscience; fMRI Data; Online Repository;
D O I
暂无
中图分类号
学科分类号
摘要
During the past two decades, the advent of functional magnetic resonance imaging (fMRI) has fundamentally changed our understanding of brain-behavior relationships. However, the data from any one study add only incrementally to the big picture. This fact raises important questions about the dominant practice of performing studies in isolation. To what extent are the findings from any single study reproducible? Are researchers who lack the resources to conduct a fMRI study being needlessly excluded? Is pre-existing fMRI data being used effectively to train new students in the field? Here, we will argue that greater sharing and synthesis of raw fMRI data among researchers would make the answers to all of these questions more favorable to scientific discovery than they are today and that such sharing is an important next step for advancing the field of cognitive neuroscience.
引用
收藏
相关论文
共 50 条
  • [21] Sharing and Reusing Gene Expression Profiling Data in Neuroscience
    Xiang Wan
    Paul Pavlidis
    Neuroinformatics, 2007, 5 : 161 - 175
  • [22] Sharing and reusing gene expression profiling data in neuroscience
    Wan, Xiang
    Pavlidis, Paul
    NEUROINFORMATICS, 2007, 5 (03) : 161 - 175
  • [23] Neuroscience networks - Data-sharing in an information age
    Insel, TR
    Volkow, ND
    Li, TK
    Battey, JF
    Landis, SC
    PLOS BIOLOGY, 2003, 1 (01) : 9 - 11
  • [24] Functional Network Dynamics on Functional MRI: A Primer on an Emerging Frontier in Neuroscience
    Eijlers, Anand J. C.
    Wink, Alle Meije
    Meijer, Kim A.
    Douw, Linda
    Geurts, Jeroen J. G.
    Schoonheim, Menno M.
    RADIOLOGY, 2019, 292 (02) : 460 - 463
  • [25] Cognitive tasks, anatomical MRI, and functional MRI data evaluating the construct of self-regulation
    Bissett, Patrick G.
    Eisenberg, Ian W.
    Shim, Sunjae
    Rios, Jaime Ali H.
    Jones, Henry M.
    Hagen, McKenzie P.
    Enkavi, A. Zeynep
    Li, Jamie K.
    Mumford, Jeanette A.
    MacKinnon, David P.
    Marsch, Lisa A.
    Poldrack, Russell A.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [26] Big Data in Cognitive Neuroscience: Opportunities and Challenges
    Dadi, Kamalaker
    Surampudi, Bapi Raju
    BIG DATA ANALYTICS, BDA 2022, 2022, 13773 : 16 - 30
  • [27] The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample
    Taylor, Jason R.
    Williams, Nitin
    Cusack, Rhodri
    Auer, Tibor
    Shafto, Meredith A.
    Dixon, Marie
    Tyler, Lorraine K.
    Cam-Can
    Henson, Richard N.
    NEUROIMAGE, 2017, 144 : 262 - 269
  • [28] Toward a functional future for the cognitive neuroscience of human aging
    Mooraj, Zoya
    Salami, Alireza
    Campbell, Karen L.
    Dahl, Martin J.
    Kosciessa, Julian Q.
    Nassar, Matthew R.
    Werkle-Bergner, Markus
    Craik, Fergus I. M.
    Lindenberger, Ulman
    Mayr, Ulrich
    Rajah, M. Natasha
    Raz, Naftali
    Nyberg, Lars
    Garrett, Douglas D.
    NEURON, 2025, 113 (01) : 154 - 183
  • [29] DATA QUALITY OVER DATA QUANTITY IN COMPUTATIONAL COGNITIVE NEUROSCIENCE
    Kopp, Bruno
    Kolossa, Antonio
    PSYCHOPHYSIOLOGY, 2018, 55 : S59 - S59
  • [30] Data quality over data quantity in computational cognitive neuroscience
    Kolossa, Antonio
    Kopp, Bruno
    NEUROIMAGE, 2018, 172 : 775 - 785