The Quaternion Fourier Number Transform

被引:3
|
作者
da Silva, Luiz C., Jr. [1 ]
Lima, Juliano B. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Elect & Syst, Recife, PE, Brazil
关键词
Number-theoretic transform; Quaternion Fourier transform; Generalized quaternions; Image processing; THEORETIC TRANSFORMS; ENCRYPTION;
D O I
10.1007/s00034-018-0824-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce the quaternion Fourier number transform (QFNT), which corresponds to a quaternionic version of the well-known number-theoretic transform. We derive several theoretical results necessary to define the QFNT and investigate its main properties. Differently from other quaternion transforms, which are defined over Hamilton's quaternions, the QFNT requires considering a quaternion algebra over a finite field. Thus, its computation involves integer arithmetic only, avoiding truncation and rounding-off errors. We give an illustrative example regarding the application of the QFNT to digital color image processing.
引用
收藏
页码:5486 / 5506
页数:21
相关论文
共 50 条
  • [1] THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
    da Silva, Luiz C.
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5610 - 5614
  • [2] Quaternion Fourier Transform on Quaternion Fields and Generalizations
    Eckhard M. S. Hitzer
    Advances in Applied Clifford Algebras, 2007, 17 : 497 - 517
  • [3] Quaternion fourier transform on quaternion fields and generalizations
    Hitzer, Eckhard M. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (03) : 497 - 517
  • [4] An uncertainty principle for quaternion Fourier transform
    Bahri, Mawardi
    Hitzer, Eckhard S. M.
    Hayashi, Akihisa
    Ashino, Ryuichi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2398 - 2410
  • [5] Fast complexified quaternion Fourier transform
    Said, Salem
    Le Bihan, Nicolas
    Sangwine, Stephen J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (04) : 1522 - 1531
  • [6] Uncertainty principle for the quaternion Fourier transform
    Lian, Pan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 1258 - 1269
  • [7] The Quaternion-Fourier Transform and Applications
    Li, Shanshan
    Leng, Jinsong
    Fei, Minggang
    COMMUNICATIONS AND NETWORKING, CHINACOM 2018, 2019, 262 : 157 - 165
  • [8] Quadratic Phase Quaternion Domain Fourier Transform
    Hitzer, Eckhard
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT IV, 2024, 14498 : 262 - 273
  • [9] Tensor transform-based quaternion fourier transform algorithm
    Grigoryan, Artyom M.
    Agaian, Sos S.
    INFORMATION SCIENCES, 2015, 320 : 62 - 74
  • [10] Miyachi’s Theorem for the Quaternion Fourier Transform
    Youssef El Haoui
    Said Fahlaoui
    Circuits, Systems, and Signal Processing, 2020, 39 : 2193 - 2206