Fast complexified quaternion Fourier transform

被引:63
|
作者
Said, Salem [1 ]
Le Bihan, Nicolas [1 ]
Sangwine, Stephen J. [2 ]
机构
[1] GIPSA Lab, Dept Images & Signal, F-38402 St Martin Dheres, France
[2] Univ Essex, Dept Comp & Elect Syst, Colchester CO4 3SQ, Essex, England
关键词
biquaternion Fourier transform (BiQFT); biquaternion-valued signals; fast algorithm (BiQFFT); Hermitian symmetries; hyperanalytic signal;
D O I
10.1109/TSP.2007.910477
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the extension of the Fourier transform to biquaternion-valued signals. We introduce a transform that we call the biquaternion Fourier transform (BiQFT). After giving some general properties of this transform, we Show how it can be used to generalize the notion of analytic signal to complex-valued signals. We introduce the notion of hyperanalytic signal. We also study the Hermitian symmetries of the BiQFT and their relation to the geometric nature of a biquaternion-valued signal. Finally, we present a fast algorithm for the computation of the BiQFT. This algorithm is based on a (complex) change of basis and four standard complex FFTs.
引用
下载
收藏
页码:1522 / 1531
页数:10
相关论文
共 50 条
  • [1] Quaternion Fourier Transform on Quaternion Fields and Generalizations
    Eckhard M. S. Hitzer
    Advances in Applied Clifford Algebras, 2007, 17 : 497 - 517
  • [2] Quaternion fourier transform on quaternion fields and generalizations
    Hitzer, Eckhard M. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (03) : 497 - 517
  • [3] The Quaternion Fourier Number Transform
    da Silva, Luiz C., Jr.
    Lima, Juliano B.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (12) : 5486 - 5506
  • [4] An uncertainty principle for quaternion Fourier transform
    Bahri, Mawardi
    Hitzer, Eckhard S. M.
    Hayashi, Akihisa
    Ashino, Ryuichi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2398 - 2410
  • [5] THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
    da Silva, Luiz C.
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5610 - 5614
  • [6] Uncertainty principle for the quaternion Fourier transform
    Lian, Pan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 1258 - 1269
  • [7] The Quaternion-Fourier Transform and Applications
    Li, Shanshan
    Leng, Jinsong
    Fei, Minggang
    COMMUNICATIONS AND NETWORKING, CHINACOM 2018, 2019, 262 : 157 - 165
  • [8] One-Dimensional Quaternion Discrete Fourier Transform and an Approach to Its Fast Computation
    Majorkowska-Mech, Dorota
    Cariow, Aleksandr
    ELECTRONICS, 2023, 12 (24)
  • [9] Quadratic Phase Quaternion Domain Fourier Transform
    Hitzer, Eckhard
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT IV, 2024, 14498 : 262 - 273
  • [10] Tensor transform-based quaternion fourier transform algorithm
    Grigoryan, Artyom M.
    Agaian, Sos S.
    INFORMATION SCIENCES, 2015, 320 : 62 - 74