The Quaternion Fourier Number Transform

被引:3
|
作者
da Silva, Luiz C., Jr. [1 ]
Lima, Juliano B. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Elect & Syst, Recife, PE, Brazil
关键词
Number-theoretic transform; Quaternion Fourier transform; Generalized quaternions; Image processing; THEORETIC TRANSFORMS; ENCRYPTION;
D O I
10.1007/s00034-018-0824-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce the quaternion Fourier number transform (QFNT), which corresponds to a quaternionic version of the well-known number-theoretic transform. We derive several theoretical results necessary to define the QFNT and investigate its main properties. Differently from other quaternion transforms, which are defined over Hamilton's quaternions, the QFNT requires considering a quaternion algebra over a finite field. Thus, its computation involves integer arithmetic only, avoiding truncation and rounding-off errors. We give an illustrative example regarding the application of the QFNT to digital color image processing.
引用
收藏
页码:5486 / 5506
页数:21
相关论文
共 50 条
  • [21] The Quaternion Domain Fourier Transform and its Properties
    Eckhard Hitzer
    Advances in Applied Clifford Algebras, 2016, 26 : 969 - 984
  • [22] Quaternion Fourier Transform and Generalized Lipschitz Classes
    Loualid, El Mehdi
    Elgargati, Abdelghani
    Daher, Radouan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (01)
  • [23] Fractional quaternion Fourier transform, convolution and correlation
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    SIGNAL PROCESSING, 2008, 88 (10) : 2511 - 2517
  • [24] Discrete Quaternion Quadratic Phase Fourier Transform
    Zayed, Mohra
    Dar, Aamir H.
    Bhat, M. Younus
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (03)
  • [25] Directional Uncertainty Principle for Quaternion Fourier Transform
    Eckhard M. S. Hitzer
    Advances in Applied Clifford Algebras, 2010, 20 : 271 - 284
  • [26] Commutative quaternion algebra and DSP fundamental properties: Quaternion convolution and Fourier transform
    Grigoryan, Artyom M.
    Agaian, Sos S.
    SIGNAL PROCESSING, 2022, 196
  • [27] Image processing using the quantum quaternion Fourier transform
    Bayro-Corrachono, Eduardo
    Vazquez-Flores, Zuleima
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (03) : 1305 - 1317
  • [28] Color image watermarking using Quaternion Fourier Transform
    Bas, P
    Le Bihan, N
    Chassery, JM
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING SIGNAL, PROCESSING EDUCATION, 2003, : 521 - 524
  • [29] Towards quaternion quadratic-phase Fourier transform
    Younus Bhat, Mohammad
    Hamid Dar, Aamir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023,
  • [30] Generalized sampling expansions associated with quaternion Fourier transform
    Cheng, Dong
    Kou, Kit Ian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (11) : 4021 - 4032