The Quaternion Fourier Number Transform

被引:3
|
作者
da Silva, Luiz C., Jr. [1 ]
Lima, Juliano B. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Elect & Syst, Recife, PE, Brazil
关键词
Number-theoretic transform; Quaternion Fourier transform; Generalized quaternions; Image processing; THEORETIC TRANSFORMS; ENCRYPTION;
D O I
10.1007/s00034-018-0824-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce the quaternion Fourier number transform (QFNT), which corresponds to a quaternionic version of the well-known number-theoretic transform. We derive several theoretical results necessary to define the QFNT and investigate its main properties. Differently from other quaternion transforms, which are defined over Hamilton's quaternions, the QFNT requires considering a quaternion algebra over a finite field. Thus, its computation involves integer arithmetic only, avoiding truncation and rounding-off errors. We give an illustrative example regarding the application of the QFNT to digital color image processing.
引用
收藏
页码:5486 / 5506
页数:21
相关论文
共 50 条
  • [31] Tighter Uncertainty Principles Based on Quaternion Fourier Transform
    Yang, Yan
    Dang, Pei
    Qian, Tao
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 479 - 497
  • [32] Connecting spatial and frequency domains for the quaternion Fourier transform
    De Bie, H.
    De Schepper, N.
    Ell, T. A.
    Rubrecht, K.
    Sangwine, S. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 581 - 593
  • [33] Deep quaternion Fourier transform for salient object detection
    Revathi, T.
    Rajalaxmi, T. M.
    Rajan, R. Sundara
    Freire, Wilhelm Passarella
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 11331 - 11340
  • [34] Convolution Theorems for Quaternion Fourier Transform: Properties and Applications
    Bahri, Mawardi
    Ashino, Ryuichi
    Vaillancourt, Remi
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [35] CORRELATION THEOREMS FOR TYPE II QUATERNION FOURIER TRANSFORM
    Bahri, Mawardi
    Ashino, Ryuichi
    2013 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2013, : 136 - 141
  • [36] Tighter Uncertainty Principles Based on Quaternion Fourier Transform
    Yan Yang
    Pei Dang
    Tao Qian
    Advances in Applied Clifford Algebras, 2016, 26 : 479 - 497
  • [37] Bochner-Minlos Theorem and Quaternion Fourier Transform
    Georgiev, S.
    Morais, J.
    Kou, K. I.
    Sproessig, W.
    QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS, 2013, : 105 - 120
  • [38] A Variation on Inequality for Quaternion Fourier Transform, Modified Convolution and Correlation Theorems for General Quaternion Linear Canonical Transform
    Bahri, Mawardi
    Karim, Samsul Ariffin Abdul
    SYMMETRY-BASEL, 2022, 14 (07):
  • [39] Real Paley-Wiener theorem for the quaternion Fourier transform
    Fei, Minggang
    Xu, Yuan
    Yan, Jingjie
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (08) : 1072 - 1080
  • [40] The Uncertainty Principle for the Two-Sided Quaternion Fourier Transform
    El Haoui, Youssef
    Fahlaoui, Said
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)