General decay for weak viscoelastic equation of Kirchhoff type containing Balakrishnan–Taylor damping with nonlinear delay and acoustic boundary conditions

被引:0
|
作者
Min Yoon
Mi Jin Lee
Jum-Ran Kang
机构
[1] Pukyong National University,Department of Applied Mathematics
[2] Pusan National University,Department of Mathematics
来源
Boundary Value Problems | / 2022卷
关键词
Weak viscoelastic equation; Balakrishnan–Taylor damping; Acoustic boundary conditions; Nonlinear delay; General decay rate; 35L70; 35B40; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the general decay of solutions for the weak viscoelastic equation of Kirchhoff type containing Balakrishnan–Taylor damping with nonlinear delay and acoustic boundary conditions. By using suitable energy and Lyapunov functionals, we prove the general decay for the energy, which depends on the behavior of both σ and k.
引用
收藏
相关论文
共 50 条
  • [21] General decay for weak viscoelastic Kirchhoff plate equations with delay boundary conditions
    Sun-Hye Park
    Jum-Ran Kang
    Boundary Value Problems, 2017
  • [22] General decay for weak viscoelastic Kirchhoff plate equations with delay boundary conditions
    Park, Sun-Hye
    Kang, Jum-Ran
    BOUNDARY VALUE PROBLEMS, 2017,
  • [23] General decay result of solutions for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term
    Gheraibia, Billel
    Boumaza, Nouri
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [24] General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions
    Wenjun Liu
    Yun Sun
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 125 - 134
  • [25] General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions
    Liu, Wenjun
    Sun, Yun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 125 - 134
  • [26] General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping
    Ha, Tae Gab
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [27] EXISTENCE AND GENERAL DECAY OF BALAKRISHNAN-TAYLOR VISCOELASTIC EQUATION WITH NONLINEAR FRICTIONAL DAMPING AND LOGARITHMIC SOURCE TERM
    Al-gharabli, Mohammad
    Balegh, Mohamed
    Feng, Baowei
    Hajjej, Zayd
    Messaoudi, Salim A.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, : 1149 - 1173
  • [28] General decay for a system of viscoelastic wave equation with past history, distributed delay and Balakrishnan-Taylor damping terms
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    Alkhalaf, Salem
    Jan, Rashid
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (10): : 3902 - 3929
  • [29] General Energy Decay Rates for a Nonlinear Wave Equation of Kirchhoff Type with Memory and Acoustic Boundary Conditions
    Ha, Tae Gab
    Park, Jong Yeoul
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2020, 63 (01): : 1 - 18
  • [30] General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions
    Lee, Mi Jin
    Kang, Jum-Ran
    MATHEMATICS, 2023, 11 (22)