General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions

被引:0
|
作者
Wenjun Liu
Yun Sun
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
关键词
35L70; 35B40; 35Q93; 35R09; General decay; Weak viscoelastic equation; Acoustic boundary condition;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the weak viscoelastic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt} - \Delta u + \alpha(t) \int\limits_{0}^{t} g(t-s)\Delta u(s)\, {\rm d}s=0$$\end{document}with a homogeneous Dirichlet condition on a portion of the boundary and acoustic boundary conditions on the rest of the boundary. We establish a general decay result, which depends on the behavior of both α and g, by using the perturbed energy functional technique. This is an extension and improvement of the previous result from Park and Park (Nonlinear Anal 74(3):993–998, 2011) (i.e., the similar problem with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha(t) \equiv 1}$$\end{document}) to the time-dependent viscoelastic case.
引用
收藏
页码:125 / 134
页数:9
相关论文
共 50 条