EXISTENCE AND GENERAL DECAY OF BALAKRISHNAN-TAYLOR VISCOELASTIC EQUATION WITH NONLINEAR FRICTIONAL DAMPING AND LOGARITHMIC SOURCE TERM

被引:5
|
作者
Al-gharabli, Mohammad [1 ]
Balegh, Mohamed [2 ]
Feng, Baowei [3 ]
Hajjej, Zayd [4 ]
Messaoudi, Salim A. [5 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Preparatory Year Program, Dhahran, Saudi Arabia
[2] King Khalid Univ, Fac Sci & Arts, Dept Math, Mohail Assir, Saudi Arabia
[3] Southwestern Univ Finance & Econ, Dept Econ Math, Chengdu 611130, Peoples R China
[4] Univ Gabes, Dept Math, Gabes, Tunisia
[5] Univ Sharjah, Coll Sci, Dept Math, POB 27272, Sharjah, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Wave equation; Balakrishnan-Taylor damping; viscoelastic damping; general decay; convexity; WAVE-EQUATION; VARIABLE-COEFFICIENTS; ENERGY; STABILITY; RATES;
D O I
10.3934/eect.2021038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Balakrishnan-Taylor viscoelastic wave equation with nonlinear frictional damping and logarithmic source term. By assuming a more general type of relaxation functions, we establish explicit and general decay rate results, using the multiplier method and some properties of the convex functions. This result is new and generalizes earlier results in the literature.
引用
收藏
页码:1149 / 1173
页数:25
相关论文
共 50 条
  • [1] General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity
    Boulaaras, Salah
    Draifia, Alaeddin
    Zennir, Khaled
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (14) : 4795 - 4814
  • [2] GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING
    Wu, Shun-Tang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 553 - 566
  • [3] General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    Beloul, Said
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5436 - 5457
  • [4] GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND NONLINEAR BOUNDARY DAMPING-SOURCE INTERACTIONS
    Wu, Shun-Tang
    [J]. ACTA MATHEMATICA SCIENTIA, 2015, 35 (05) : 981 - 994
  • [5] General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping
    Ha, Tae Gab
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [6] General decay result of solutions for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term
    Gheraibia, Billel
    Boumaza, Nouri
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [7] General decay rate for a viscoelastic wave equation with distributed delay and Balakrishnan-Taylor damping
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 1120 - 1133
  • [8] General Decay of a Nonlinear Viscoelastic Wave Equation with Balakrishnan-Taylor Damping and a Delay Involving Variable Exponents
    Zuo, Jiabin
    Rahmoune, Abita
    Li, Yanjiao
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [9] DECAY RATES FOR A VISCOELASTIC WAVE EQUATION WITH BALAKRISHNAN-TAYLOR AND FRICTIONAL DAMPINGS
    Feng, Baowei
    Kang, Yong Han
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 321 - 343
  • [10] Existence and exponential decay of the Dirichlet problem for a nonlinear wave equation with the Balakrishnan-Taylor term*
    Ngoc, Le Thi Phuong
    Nhan, Nguyen Huu
    Nam, Bui Duc
    Long, Nguyen Thanh
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (02) : 225 - 247