Modified Attractive Inverse-Square Potential in the Induced Electric Dipole System

被引:0
|
作者
K. Bakke
J. G. G. S. Ramos
机构
[1] Universidade Federal da Paraíba,Departamento de Física
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We examine the spatial distribution of electric charges within an extended, non-conductive cylinder featuring an inner radius denoted as r0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{0}$$\end{document}. Our investigation unveils the emergence of a distinct modified attractive-inverse square potential, arising from the intricate interplay between the electric field and the induced electric dipole moment of a neutral particle. This modified potential notably departs from the conventional inverse-square potential, showcasing an additional term proportional to r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^{-1}$$\end{document}. As a result, we present compelling evidence for the realization of a discrete energy spectrum within this intricate system.
引用
收藏
相关论文
共 50 条
  • [21] The Cauchy problem for Choquard equation with an inverse-square potential
    Liu, Jinxing
    Wang, Xiongrui
    Zhou, Jun
    Deng, Xiumei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2007 - 2023
  • [23] EIGENFUNCTION EXPANSIONS FOR THE SCHRODINGER EQUATION WITH AN INVERSE-SQUARE POTENTIAL
    Smirnov, A. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 187 (02) : 762 - 781
  • [24] Lp estimates for the wave equation with the inverse-square potential
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, AS
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (02) : 427 - 442
  • [25] MAXIMAL ESTIMATES FOR SCHRODINGER EQUATIONS WITH INVERSE-SQUARE POTENTIAL
    Miao, Changxing
    Zhang, Junyong
    Zheng, Jiqiang
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 273 (01) : 1 - 19
  • [26] Dispersive estimate for the wave equation with the inverse-square potential
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, AS
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (06) : 1387 - 1400
  • [27] Focusing nonlinear Hartree equation with inverse-square potential
    Chen, Yu
    Lu, Jing
    Meng, Fanfei
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (12) : 2271 - 2298
  • [28] BV Capacity for the Schrodinger Operator with an Inverse-Square Potential
    Han, Yang
    Liu, Yu
    Wang, Haihui
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2765 - 2785
  • [29] THE ENERGY-CRITICAL NLS WITH INVERSE-SQUARE POTENTIAL
    Killip, Rowan
    Miao, Changxing
    Visan, Monica
    Zhang, Junyong
    Zheng, Jiqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3831 - 3866
  • [30] Gravitational Microlensing in Modified Gravity Theories - Inverse-Square Theorem
    Asada, Hideki
    PROGRESS OF THEORETICAL PHYSICS, 2011, 125 (02): : 403 - 410