Modified Attractive Inverse-Square Potential in the Induced Electric Dipole System

被引:0
|
作者
K. Bakke
J. G. G. S. Ramos
机构
[1] Universidade Federal da Paraíba,Departamento de Física
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We examine the spatial distribution of electric charges within an extended, non-conductive cylinder featuring an inner radius denoted as r0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{0}$$\end{document}. Our investigation unveils the emergence of a distinct modified attractive-inverse square potential, arising from the intricate interplay between the electric field and the induced electric dipole moment of a neutral particle. This modified potential notably departs from the conventional inverse-square potential, showcasing an additional term proportional to r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^{-1}$$\end{document}. As a result, we present compelling evidence for the realization of a discrete energy spectrum within this intricate system.
引用
收藏
相关论文
共 50 条
  • [11] On the inhomogeneous NLS with inverse-square potential
    Campos, Luccas
    Guzman, Carlos M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [12] Polynomial Integral for Square and Inverse-square Potential Systems
    Virdi, Jasvinder Singh
    Srivastava, A. K.
    Ahmad, Muneer
    RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES (RAFAS 2016), 2017, 1860
  • [13] Focusing intercritical NLS with inverse-square potential
    Deng, Mingming
    Lu, Jing
    Meng, Fanfei
    APPLICABLE ANALYSIS, 2023, 102 (06) : 1798 - 1807
  • [14] On a semilinear elliptic equation with inverse-square potential
    Brezis, Haim
    Dupaigne, Louis
    Tesei, Alberto
    SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (01): : 1 - 7
  • [15] On a semilinear elliptic equation with inverse-square potential
    Haïm Brezis
    Louis Dupaigne
    Alberto Tesei
    Selecta Mathematica, 2005, 11
  • [16] The nonlinear Schrodinger equation with an inverse-square potential
    Murphy, Jason
    NONLINEAR DISPERSIVE WAVES AND FLUIDS, 2019, 725 : 215 - 225
  • [17] KOLMOGOROV EQUATIONS PERTURBED BY AN INVERSE-SQUARE POTENTIAL
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Rhandi, Abdelaziz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (03): : 623 - 630
  • [18] Accurate WKB wave functions for weakly attractive inverse-square potentials
    Friedrich, H
    Trost, J
    PHYSICAL REVIEW A, 1999, 59 (02): : 1683 - 1686
  • [19] Accurate WKB wave functions for weakly attractive inverse-square potentials
    Friedrich, H.
    Trost, J.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (02):
  • [20] On a Semilinear Parabolic Equation with Inverse-Square Potential
    Punzo, Fabio
    Tesei, Alberto
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2010, 21 (04) : 359 - 396