MAXIMAL ESTIMATES FOR SCHRODINGER EQUATIONS WITH INVERSE-SQUARE POTENTIAL

被引:15
|
作者
Miao, Changxing [1 ]
Zhang, Junyong [2 ]
Zheng, Jiqiang [3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[3] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
inverse square potential; maximal estimate; spherical harmonics; WAVE-EQUATION;
D O I
10.2140/pjm.2015.273.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider maximal estimates for the solution to an initial value problem of the linear Schrodinger equation with a singular potential. We show a result about the pointwise convergence of solutions to this special variable coefficient Schrodinger equation with initial data u(0) is an element of H-S (R-n) for s > 1/2 or radial initial data u(0) is an element of H-S (R-n) for s >= 1/4 and that the solution does not converge when s < 1/4.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条